Плазмиды бактерий, их функции и свойства. Использование плазмид в генной инженерии

Плазмиды - внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1-5 % ДНК хромосомы. Плазмиды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интегрировать) в хромосому и реплицироваться вместе с ней. Различают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.
Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:
1) устойчивость к антибиотикам;
2) образование колицинов;
3) продукция факторов патогенности;
4) расщепление сложных органических веществ;
Термин «плазмиды» впервые введен для обозначения полового фактора бактерий. Плазмиды несут гены, не обязательные для клетки-хозяина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их временные преимущества по сравнению с бесплазмидными бактериями.
Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.
Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.
Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке.
Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.
У бактерий различных видов обнаружены R-плазмиды, несущие гены, ответственные за множественную устойчивость к лекарственным препаратам - антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.
Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетического материала, широко используются в генетической инженерии для получения рекомбинантных штаммов.

Узнайте больше нового.

В этой статье содержится информация о загадочных и сложных молекулярных структурах различных клеток, чаще бактерий, - плазмидах. Здесь вы найдете информацию об их строении, предназначении, способах репликации, общей характеристике и многом другом.

Чем являются плазмиды

Плазмиды - это ДНК-молекулы, которые имеют маленький размер и по физическому положению отделяются от клеточных хромосом геномного типа. Имеют способность к автономному процессу репликации. В основном плазмиды встречаются в бактериальных организмах. Внешне это молекула, имеющая кольцевой двухцепочечный вид. Крайне редко плазмиды можно встретить у архей и эукариотических организмов.

Как правило, плазмиды бактерий содержат генетическую информацию, способную повысить устойчивость организма к факторам внешней природы, негативно влияющим на состояние организма, в котором они находятся. Иными словами, плазмиды могут снижать эффективность антибиотиков в связи с повышением устойчивости самой бактерии. Часто встречается процесс передачи плазмид от бактерии к бактерии. Плазмиды - это структурные элементы, являющиеся средством действенного переноса генетической информации горизонтальным способом.

Д. Ледерберг - молекулярный биолог, ученый родом из США, ввел понятие плазмида в 1952.

Размерные величины плазмид и их численность

Плазмиды - это структуры, имеющие самые разнообразные величины. Мельчайшие формы могут содержать в себе около двух тысяч парных оснований или меньше, в то время как другие, крупнейшие формы плазмид, заключают в себе по несколько сотен тысяч оснований парного типа. Знание этого позволяет провести черту между мегаплазмидами и мини-хромосомами. Существуют бактерии, способные заключать в себе плазмиды различного типа. При этом общая сумма их генетического материала может превосходить размер материала клетки-хозяина.

Количество копий плазмид, находящихся в одной клетке, может сильно варьироваться. Например, в одной клетке их может быть всего пара, в то время как в другой число плазмид одного типа доходит до десятков или же сотен. Количество их обусловлено репликационным характером.

Плазмиды - это клеточные структурные элементы способные к автономной репликации. То есть они могут реплицироваться самостоятельно, не подвергаясь контролю хромосомы. В то же время хромосома может контролировать сами плазмиды. В случае со строгим контролем количество реплицируемых плазмид обычно мало, около 1-3. Плазмиды мелких размеров чаще подвергаются ослабленному виду контроля и могут создавать большее количество копий.

Процесс репликации

Бактериальные плазмиды способны автономно реплицироваться. Однако данный процесс в разной степени подвергается хромосомному контролю. Это обуславливается отсутствием некоторых необходимых генов. Ввиду этого в процесс репликации плазмид включаются клеточные ферменты.

Этап репликации делится на стадию инициации, элонгации и терминации. ДНК-полимераза начнет репликацию лишь после ее затравки при помощи праймера. Сначала открывается цепь и происходит праймирование РНК, следом разрывается одна из цепей и образуется свободный 3`-OH конец.

Чаще всего этап инициации происходит под действием белков-катализаторов, кодируемых плазмидой. Иногда эти же белки могут вступать в процесс віработки праймера.

Элонгация происходит при помощи голофермента ДНК-полимеразы III (иногда I) и некоторых клеточных белках, состоящих в реплисоме.

Терминация репликации может начинаться лишь при наличии некоторых условий.

Принципы репликационного контроля

Контроль механизмов репликации осуществляется на этапе репликационной инициации. Это позволяет удерживать численность плазмид в строгом количестве. К молекулам, способным осуществлять его, относятся:

  1. РНК, имеющие противоположную полярность.
  2. ДНК - последовательность (итерон).
  3. РНК, имеющие противоположную полярность, и белки.

Данные механизмы обуславливают частоту повтора циклов воссоздания плазмид внутри клетки, они также фиксируют любые отклонения от нормы частоты.

Виды механизмов репликации

Существует три механизма репликации плазмид:

  1. Тета-механизм состоит из этапа расплетания 2-х цепей родителей, синтеза праймера РНК на каждой цепи, репликационной инициации за счет нарастания ковалентного типа пРНК на обоих цепях и синтеза соответствующей цепочки ДНК на родительских цепях. Несмотря на то что процесс синтеза происходит одновременно, одна из цепей является лидером, а другая отстает.
  2. Замещение цепи - вытеснение новосинтезированной цепью ДНК одной из родительских. В результате такого механизма образуется ДНК кольцевой формы одноцепочного типа и суперспирализованная ДНК с двумя цепями. ДНК из одной цепочки позже будет восстанавливаться.
  3. Механизм репликации катящегося кольца - представляет собой разрыв одноцепочной ДНК при помощи белка Rep. В результате этого образуется группа 3`-OH, которая будет выступать в роли праймера. Данный механизм протекает при помощи различных белков клетки-носителя, например, хеликазы ДНК.

Способы передачи

Плазмиды попадают в клетку, используя один из двух путей. Первый путь - это между клеткой-носителем и клеткой, которая не содержит плазмид, в результате процесса конъюгации. Существуют конъюгативные плазмиды у бактерий грамположительных и грамотрицательных. К первому способу также относятся передачи в момент трансдукции или трансформации. Второй путь осуществляется искусственно, путем внедрения плазмид в клетку, при этом организм должен пережить экспрессию генов клетки-носителя, то есть приобрести компетентность клетки.

Выполняемые функции

Роль плазмид, как правило, заключается в придании клетке-носителю определенных свойств. Некоторые из них могут практически не влиять на фенотипические характеристики своего хозяина, в то время как другие способны вызвать проявление у носителя свойств, дающих ему превосходство над другими такими же клетками. Это превосходство поможет клетке-хозяину лучше переживать вредные условия среды, в которой она обитает. В случаи отсутствия таких плазмид клетка либо будет плохо расти и развиваться, либо вовсе погибнет.

Плазмиды - это многофункциональная составная клетки. Они выполняют огромнейшее количество функций:

  1. Транспорт генетической информации во время протекания конъюгации. Обычно это делает F-плазмид.
  2. Бактериоциногенные плазмиды контролируют белковый синтез, который может приводить к гибели других бактерий. Этим занимаются в основном Col-плазмиды.
  3. Hly-плазмида занимается синтезом гемолизина.
  4. Обуславливают сопротивляемость воздействию тяжелых металлов.
  5. R-плазмида - повышает сопротивляемость антибиотическим средствам.
  6. Ent-плазмида - позволяет синтезироваться энтеротоксинам.
  7. Некоторые из них увеличивают степень устойчивости к ультрафиолетовому излучению.
  8. Плазмиды колонизационных антигенов позволяют бактериальной адгезии проходить на клеточной поверхности внутри организма животных.
  9. Определенные из их представителей отвечают за разрез ДНК-цепи, то есть за рестрикцию, а также модификацию.
  10. Плазмиды САМ обуславливают камфорное расщепление, плазмиды XYL расщепляют ксилол, а плазмиды SAL - салицилат.

Наиболее изученные виды

Наиболее хорошо человек изучил свойства плазмид F, R и Col.

F-плазмида - это самая известная конъгативная плазмида. Представляет собой эписому, состоящую из ста тысячи оснований парного типа. Имеет собственную точку репликационного начала и точку разрыва. Как и другие плазмиды конъюгативного типа, занимается кодированием белков, способных противодействовать процессу прикрепления пилей остальных бактериальных организмов к стенке конкретной клетки.

Кроме стандартной информации, содержит в себе локусы tra и trb, которые организуют общий, целостный оперон, содержащий в себе тридцать четыре тысячи парных оснований. Гены, находящиеся в этом опероне, отвечают за разнообразные аспекты конъюгации.

R-плазмида (фактор) - является молекулой ДНК и имеет кольцевую форму. ДНК плазмиды заключают в себе информацию, отвечающую за протекание и реализацию процесса репликации и переноса резистентных свойств внутрь клетки-реципиента. Они же определяют уровень устойчивость клетки определенным антибиотикам. Некоторые из R-плазмид являются конъюгативными. Передача R-фактора происходит в результате трансдукции и стандартного клеточного деления. Они способны передаваться между отличными друг от друга видами или даже семействами.

Именно эта форма плазмид часто вызывает проблемы в процессе лечения заболеваний бактериальной природы при использовании известных на сегодня антибиотических средств.

Col-плазмиды отвечают за синтез колицина - особенного белка, способного подавлять процессы развития и размножения всех бактерий, кроме самого носителя.

Характеристика классификации

Вся система классификации строится в соответствии с некоторыми свойствами плазмид:

  1. Способы репликации и его механизм протекания.
  2. Наличие общего круга носителей.
  3. Особенности копийности.
  4. Топологические характеристики плазмид.
  5. Совместимость.
  6. Не/конъюгативные плазмиды.
  7. Наличие маркерного гена, находящегося на плазмиде.

Однако в любом способе их классификации содержится точка репликационной инициации.

Области применения плазмид

Функция плазмид при использовании их человеком заключается в способе создания клонированной копии ДНК. Сами плазмиды выступают в роли вектора. Репликационная способность плазмидов позволяет воссоздавать рекомбинантную ДНК в клетке-носителе. Широкое использование они нашли в генной инженерии. В этой отрасли науки плазмиды создаются искусственным путем для переноса информации генетического типа или каких-либо манипуляционных действий с генетическим материалом.

Понятие об этих клеточных компонентах встречается и в игровой индустрии ("Биошок"). Плазмиды выполняют функцию особых веществ, которые способны придать организму уникальные свойства. Важно знать, что игровые плазмиды не имеют практически ничего общего с реально существующими. В игре, выполненной в жанре которая называется Bioshock, плазмиды являются генетической модификацией определенных свойств организма, их изменением и способом придания сверхспособностей.

11. Плазмиды бактерий,их функции и свойства. Использование плазмид в генной инженерии. Медицинская биотехнология, ее задачи и достижения.

Плазмиды представляют собой двухцепочечные молекулы ДНК размером от 103 до 106 н.п. Они могут быть кольцевой формой и линейными. Плазмиды кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преимущества при попадании в неблагоприятные условия существования.

Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:

Устойчивость к антибиотикам;

Продукцию факторов патогенности;

Способность к синтезу антибиотических веществ;

Образование колицинов;

Расщепление сложных органических веществ;

Образование ферментов рестрикции и модификации. Репликация плазмид происходит независимо от хромосомы с участием того же набора ферментов, который осуществляет репликацию бактериальной хромосомы (см. раздел 3.1.7 и рис. 3.5).

Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных репликонов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регулируется одним и тем же механизмом.

Плазмиды, которые могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона, называются интегративными или эписомами.

Плазмиды, способные передаваться из одной клетки в другую, иногда даже принадлежащую иной таксономической единице, называются трансмиссивными (конъюгативными). Трансмиссивность присуща лишь крупным плазмидам, имеющим tra-оперон, в который объединены гены, ответственные за перенос плазмиды. Эти гены кодируют половые пили, которые образуют мостик с клеткой, не содержащей трансмиссивную плазмиду, по которой плазмидная ДНК передается в новую клетку. Этот процесс называется конъюгацией (подробно он будет рассмотрен в разделе 5.4.1). Бактерии, несущие трансмиссивные плазмиды, чувствительны к «мужским» нитевидным бактериофагам.

Мелкие плазмиды, не несущие tra-гены, не могут передаваться сами по себе, но способны к передаче в присутствии трансмиссивных плазмид, используя их аппарат конъюгации. Такие плазмиды называются мобилизуемыми, а сам процесс - мобилизацией нетрансмиссивной плазмиды.

Особое значение в медицинской микробиологии имеют плазмиды, обеспечивающие устойчивость бактерий к антибиотикам, которые получили название R-плазмид (от англ. resistance - противодействие), и плазмиды, обеспечивающие продукцию факторов патогенности, способствующих развитию инфекционного процесса в макроорганизме. R-плазмиды содержат гены, детерминирующие синтез ферментов, разрушающих антибактериальные препараты (например, антибиотики). В результате наличия такой плазмиды бактериальная клетка становится устойчивой (резистентной) к действию целой группы лекарственных веществ, а иногда и к нескольким препаратам. Многие R-плазмиды являются трансмиссивными, распространяясь в популяции бактерий, делая ее недоступной к воздействию антибактериальных препаратов. Бактериальные штаммы, несущие R-плазмиды, очень часто являются этиологическими агентами внутрибольничных инфекций.

Плазмиды, детерминирующие синтез факторов патогенности, в настоящее время обнаружены у многих бактерий, являющихся возбудителями инфекционных заболеваний человека. Патогенность возбудителей шигеллезов, иерсиниозов, чумы, сибирской язвы, иксодового бореллиоза, кишечных эшерихиозов связана с наличием у них и функционированием плазмид патогенности.

Некоторые бактериальные клетки содержат плазмиды, детерминирующие синтез бактерицидных по отношению к другим бактериям веществ. Например, некоторые Е. coli владеют Col-плазмидой, определяющей синтез колицинов, обладающих микробоцидной активностью по отношению к колиформным бактериям. Бактериальные клетки, несущие такие плазмиды, обладают преимуществами при заселении экологических ниш.

Плазмиды используются в практической деятельности человека, в частности в генной инженерии при конструировании специальных рекомбинантных бактериальных штаммов, вырабатывающих в больших количествах биологически активные вещества (см. главу 6).

Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология - это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием.

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается в конечный продукт. С помощью биотехнологии получают множество продуктов, используемых в различных отраслях:

Медицине (антибиотики, витамины, ферменты, аминокислоты, гормоны, вакцины, антитела, компоненты крови, диагностические препараты, иммуномодуляторы, алкалоиды, пищевые белки, нуклеиновые кислоты, нуклеозиды, нуклеотиды, липиды, антиметаболиты, антиоксиданты, противоглистные и противоопухолевые препараты);

Ветеринарии и сельском хозяйстве (кормовой белок: кормовые антибиотики, витамины, гормоны, вакцины, биологические средства защиты растений, инсектициды);

Пищевой промышленности (аминокислоты, органические кислоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи);

Химической промышленности (ацетон, этилен, бутанол);

Энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диагностических, профилактических и лечебных медицинских и ветеринарных препаратов, на решение продовольственных вопросов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов - молочных, кондитерских, хлебобулочных, мясных, рыбных); на обеспечение многих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все возрастающую роль биотехнологии в экологии, так как очистка сточных вод, переработка отходов и побочных продуктов, их деградация (фенол, нефтепродукты и другие вредные для окружающей среды вещества) осуществляются с помощью микроорганизмов.

В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, промышленную и экологическую. Медицинская в свою очередь подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная - на ветеринарную и биотехнологию растений, а промышленная - на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (старую) и новую. Последнюю связывают с генетической инженерией. Общепризнанное определение предмета «биотехнология» отсутствует и даже ведется дискуссия о том, наука это или производство.

Плазмиды -- внехромосомные мобильные генетические структуры бактерий, представляющие собой замкнутые кольца двунитчатой ДНК. По размерам составляют 0,1--5 % ДНК хромосомы. Плазмиды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интегрировать) в хромосому и реплицироваться вместе с ней. Различают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссивные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Среди фенотипических признаков, сообщаемых бактериальной клетке плазмидами, можно выделить следующие:

  • 1) устойчивость к антибиотикам;
  • 2) образование колицинов;
  • 3) продукция факторов патогенности;
  • 4) способность к синтезу антибиотических веществ;
  • 5) расщепление сложных органических веществ;
  • 6) образование ферментов рестрикции и модификации.

Термин «плазмиды» впервые введен американским ученым Дж. Ледербергом (1952) для обозначения полового фактора бактерий. Плазмиды несут гены, не обязательные для клетки-хозяина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их временные преимущества по сравнению с бесплазмидными бактериями.

Некоторые плазмиды находятся под строгим контролем. Это означает, что их репликация сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутствует одна или, по крайней мере, несколько копий плазмид.

Число копий плазмид, находящихся под слабым контролем, может достигать от 10 до 200 на бактериальную клетку.

Для характеристики плазмидных реплико-нов их принято разбивать на группы совместимости. Несовместимость плазмид связана с неспособностью двух плазмид стабильно сохраняться в одной и той же бактериальной клетке. Несовместимость свойственна тем плазмидам, которые обладают высоким сходством репликонов, поддержание которых в клетке регулируется одним и тем же механизмом.

Некоторые плазмиды могут обратимо встраиваться в бактериальную хромосому и функционировать в виде единого репликона. Такие плазмиды называются интегративными или эписомами.

У бактерий различных видов обнаружены R-плазмиды, несущие гены, ответственные за множественную устойчивость к лекарственным препаратам антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, например возбудителей чумы, столбняка, способность почвенных бактерий использовать необычные источники углерода, контролировать синтез белковых антибиотикоподобных веществ -- бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганизмов позволяет полагать, что аналогичные структуры широко распространены у самых разнообразных микроорганизмов.

Плазмиды подвержены рекомбинациям, мутациям, могут быть элиминированы (удалены) из бактерий, что, однако, не влияет на их основные свойства. Плазмиды являются удобной моделью для экспериментов по искусственной реконструкции генетического материала, широко используются в генетической инженерии для получения рекомбинантных штаммов. Благодаря быстрому самокопированию и возможности конъюгаци-онной передачи плазмид внутри вида, между видами или даже родами плазмиды играют важную роль в эволюции бактерий.

Страница 1

Было обнаружено, что у многих видов бактерий помимо основной массы ДНК, находящейся в «бактериальной хромосоме» (несколько миллионов пар оснований) имеются еще «крошечные» кольцевые, двунитевые и суперскрученные молекулы ДНК. Они были названы плазмидами - по месту расположения их в протоплазме клетки. Количество пар оснований в плазмидах ограничено диапазоном от 2-х до 20-ти тысяч. Некоторые бактерии имеют только по одной плазмиде. В других - их обнаруживается несколько сотен.

В норме плазмиды редуплицируются при делении бактериальной клетки одновременно с основной ДНК хромосомы. Для своего размножения они используют «хозяйские» ДНК-полимеразы I, III и другие ферменты. Плазмиды синтезируют свои специфические белки, для чего используется РНК-полимераза и рибосомы, также принадлежащие бактерии-хозяину. В числе этих «продуктов деятельности» плазмид иногда оказываются вещества, разрушающие антибиотики (ампимицин, тетрациклин, неомицин и другие). Что придает самой бактерии-хозяину устойчивость против воздействия этих антибиотиков, если она сама по себе таковой устойчивостью не обладает. Мало того. «Самостоятельность» некоторых плазмид простирается до того, что они оказываются способными размножаться в клетке бактерии даже тогда, когда синтез белка в ней (а следовательно, и ее деление) блокированы действием специфических ингибиторов. В этом случае в бактерии может накопиться до 2-3 тысяч плазмид.

Очищенные плазмиды способны проникать из питательной среды внутрь клеток чужеродных бактерий, там обосновываться и нормально размножаться. Правда, для этого приходится предварительно увеличивать проницаемость оболочек этих бактерий, обрабатывая их раствором хлористого кальция.

Успешное встраивание чужой плазмиды удается лишь для ничтожного меньшинства клеток обрабатываемой популяции. Однако если бактерия-реципиент не обладала устойчивостью к определенному антибиотику, а «прижившаяся» плазмида эту устойчивость ей сообщает, то даже из единичных успешно «трансформированных» бактерий на питательной среде с добавкой антибиотика можно вырастить вполне полноценные колонии, наследственно обладающие встроенной плазмидой.

Наконец, самое важное. Если в ДНК плазмиды (до начала трансформации) удастся «встроить» фрагмент вовсе чуждой для нее ДНК (например ген животного происхождения), то этот фрагмент вместе с плазмидой войдет внутрь клетки реципиента, вместе с ней будет размножаться и направлять внутри бактерии синтез «псевдоплазмидных» белков, закодированных в этом гене!

Вспомним теперь с какой скоростью размножаются бактерии в жидкой питательной среде, поддерживая и приумножая при этом синтез плазмидных (а также «псевдоплазмидных»!) белков. Очевидно, что здесь просматривается перспектива наработки большого количества индивидуального белка - продукта деятельности вторгнувшегося («тайком») в бактерию гена. Остается решить проблему встраивания именно избранного гена в плазми-ду. А также и получения первоначально необходимого количества этого самого гена, если отправным пунктом является известная (хотя бы частично) структура интересующего нас белка. Вот тут-то и раскроются уникальные возможности использования рестриктаз.

Но сначала несколько слов о выделении самих плазмид из клеток их нормальных бактерий-хозяев. Это - дело не сложное. Из бактерии можно очистить суммарную ДНК, как это было описано раньше. Потом одним из физических методов отделить низкомолекулярную ДНК плазмид от сравнительно высокомолекулярной ДНК бактериальной хромосомы. Надо только позаботиться о том, чтобы при вскрытии клетки не появились малые обломки основной ДНК. В частности, не следует пользоваться для разрушения оболочек бактерий ультразвуком.

Можно поступить проще. Сферопласты бактерий обработать слабой щелочью + DDC-Na или прокипятить в течение 1 минуты. ДНК бактериальной хромосомы, вместе со связанными с ней белками, денатурируется и выпадает хлопьями в осадок. Ее легко удалить центригурированием. ДНК кольцевых плазмид также сначала денатурируется. Но поскольку ее однонитевые кольца топологически связаны, они разойтись не могут. После восстановления нормальных условий среды ренатурируется и нативная структура плазмид. Они остаются в растворе.

За последние годы выделены и очищены сотни плазмид. Их описание, естественно, начинается с представления полной нуклеотидной последовательности плазмидной ДНК. Современ-ные автоматические «секвенаторы» позволяют расшифровать последовательность 4-х-5-ти тысяч пар нуклеотидов за неделю. В 80-е годы, когда секвенирование ДНК производили вручную, такая работа занимала несколько месяцев.


Также смотрите:

Синергетика в современной науке
В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название "синергетика". Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского у...

Кормовая база
Известно, что выдра питается преимущественно рыбой, главным образом, мелкой, не превышающей в длину 20 см. Второй по важности вид корма - лягушки. Выдра поедает их в течение всего года и особенно много в холодное время, находя места их зимовок. Кормом могут служить та...

Химическая природа и свойства витамина В12.
Химическая природа витамина В12 была установлена в 1955 г. Он оказался самым сложным из всех витаминов с молекулярным весом 1356. Витамин В12 растворяется в воде и спирте, нерастворим в эфире. Его кристаллы темно-красного цвета благодаря наличию атома кобальта. Вит...