Медиатор ацетилхолин и механизмы его действия. Ацетилхолин – важный медиатор мозга

Механизм действия ацетилхолина

Холинэргические рецепторы (ацетилхолиновые рецепторы) - трансмембранные рецепторы, лигандом которых является ацетилхолин.

Ацетилхолин служит нейротрансмиттером как в пре-, так и в постганглионарных синапсах парасимпатической системы и в преганглионарных симпатических синапсах, в ряде постганглионарных симпатических синапсов, нервно-мышечных синапсах (соматическая нервная система), а также в некоторых участках ЦНС. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими.

Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы.

Специфические холинергические рецепторы с фармакологичесой точки зрения разделяются на никотиновые (Н-рецепторы) и мускариновые (М-рецепторы).

Ацетилхолиновый никотиновый рецептор является одновременно и ионным каналом, т.е. относится к рецепторам-каналоформером, тогда как ацетилхолиновый мускариновый рецепторотносится к классу серпентиновых рецепторов, осуществляющих передачу сигнала через гетеротримерные G - белки.

Холинорецепторы вегетативных ганглиев и внутренних органов различаются.

На постганглионарных нейронах и клетках мозгового вещества надпочечников располагаются N-холинорецепторы (чувствительные к никотину), а на внутренних органах - М-холинорецепторы (чувствительные к алкалоиду мускарину). Первые блокируются ганглиоблокаторами, вторые - атропином.

М-холинорецепторы подразделяются на несколько подтипов:

М1-холинорецепторы располагаются в ЦНС и, возможно, на нейронах парасимпатическихганглиев;

М2-холинорецепторы - на гладких и сердечной мышцах и клетках железистого эпителия.

М3-холинорецепторы располагаются на гладких мышцах и железах.

Селективным стимулятором М2-холинорецепторов служит бетанехол. Пример селективного блокатора М1-холинорецепторов - пирензепин. Этот препарат резко подавляет выработку HCl в желудке.

Стимуляция М2-холинорецепторов через Gi-белок приводит к ингибированию аденилатциклазы, а стимуляция М2-холинорецепторов через Gq-бeлок - к активации фосфолипазы С и образованию ИФ3 и ДАГ (рис. 70.5).

Стимуляция М3-холинорецепторов также приводит к активации фосфолипазы С. Блокатором этих рецепторов служит атропин.

Методами молекулярной биологии были выявлены и другие подтипы М-холинорецепторов, однако они пока недостаточно изучены.

Ацетилхолин (acetylcholine, Ach) [лат. acetum -- уксус, греч. chole -- желчь и лат. -in(e) -- суффикс, обозначающий "подобный"] -- уксусный эфир холина (см. Холин), нейромедиатор, передающий нервное возбуждение через синаптическую щель в парасимпатической нервной системе; синтезируется в тканях при участии холинацетилазы, гидролизуется ферментом ацетилхолинэстеразой. А. обнаружен также в составе некоторых растительных ядов. Впервые выделен из спорыньи в 1914 г. Г. Дейлом. За установление роли А. в передаче нервного импульса он совместно с О. Леви получил Нобелевскую премию за 1936 г.

Ацетилхолин действует через холинергические окончания нервов, концевые мионевральные пластинки и другие холинорецепторы. Находясь в белково-липоидном комплексе (прекурссор), ацетилхолин освобождается при электрическом и нервном возбуждении. Исследованиями Palay в 1956 г. с помощью электронной микроскопии показано накопление капель жидкости в порах синапса, часть из которых лопалась при прохождении нервного импульса. Полагают, что секретируемая жидкость -- ацетилхолин (теория пи-ноцитоза). Выделяясь в холинергических субстанциях сердца, ацетилхолин воздействует на сопредельные клеточные мембраны. Согласно современным взглядам, мебрана несет в покое определенный электрический заряд, обусловленный перераспределением иона К. Концентрация калия в покое много выше внутри клетки, нежели снаружи. Для натрия, наоборот, концентрация снаружи клетки велика, а внутри -- мала. Концентрация ионов натрия внутри клетки остается постоянной благодаря активному удалению его из клетки во время процесса, называемого "натриевым насосом". Калий же проникает на поверхность клетки, оставляя более массивный анион внутри ее, поэтому наружная поверхность клетки получает избыток положительных зарядов, внутренняя -- отрицательных. Чем больше катионов калия выйдет из клетки, тем выше оказывается заряд ее мембраны, и наоборот -- при замедлении выхода калия потенциал мембраны снижается. Прямые измерения потенциала покоя показали, что он равен в миокарде желудочков и предсердий приблизительно 90 мв, в синусовом узле 70 мв. Если по какой-либо причине потенциал мембраны снизится до 50 мв, резко меняются свойства мембраны и она пропускает внутрь клетки значительное количество ионов натрия. Тогда внутри клетки превалируют положительные ионы и мембранный потенциал меняет свой знак. Перезарядка (деполяризация) мембраны вызывает электрический потенциал действия. После сокращения восстанавливаются концентрации калия и натрия, свойственные состоянию покоя (реполяризация).

Установлено, что холинергические (парасимпатомиметические, парасимпатотропные, трофотропные) реакции возникают при действии ацетилхолина (или других соединений холина) на холинорецепторы, субклеточные образования, клетки, ткани, органы или организм в целом. Помимо своего основного (холинергического) действия, ацетилхолин вызывает освобождение калия, связанного белками, повышает или снижает проницаемость биологических мембран, принимает участие в регуляции избирательной проницаемости эритроцитов, изменяет активность отдельных дыхательных ферментов, влияет на активность катепсинов, на обновляемость фосфатной группы в фосфолипидах, на метаболизм макроэр-гических фосфорных соединений, повышает устойчивость отдельных тканей и организма в целом к гипоксии. Коштоянц высказал предположение, что, осуществляя медиаторное действие, ацетилхолин вступает в круг тканевых биохимических превращений.

Нормальный механизм автоматизма в сердце основан на спонтанном уменьшении потенциала синусового узла до --50 мв (генераторный потенциал). Это происходит в синусовом узле посредством особого метаболического процесса, основанного на снижении проницаемости мебраны для калия. Ацетилхолин, напротив, специфически увеличивает проницаемость для К мембраны синусового узла, тем самым повышая выход К и препятствуя развитию генераторного потенциала. Поэтому частота сердечных сокращений падает. Если же концентрацию ацетилхолина увеличить еще более, то генераторный потенциал развивается настолько медленно, что мембраны синусового узла теряют способность развивать потенциал действия (аккомодация мембраны). Наступает остановка сердца. Повышение проницаемости для калия под влиянием ацетилхолина обусловливает более быстрый процесс восстановления потенциала покоя мембраны (реполяризацию). Введенный ацетилхолин разносится кровью не всегда равномерно. Поэтому в предсердии этот процесс ускоренной реполяризации также может идти неравномерно, что при сохранившемся возбуждении синусового узла проявляется как трепетание и мерцание предсердий. Желудочки сердца, лишенные холинергических окончаний, остаются нечувствительными к ацетилхолину. Активация центров автоматизма II порядка (пучка Гиса) связана со свойством волокон Пуркинье развивать спонтанную деполяризацию так же, как это происходит в синусовом узле.

Немедиаторное действие ацетилхолина в целостном организме представляет один из наименее изученных и наиболее спорных разделов гуморально-гормональной регуляции функций. Установлено, что холинергические (парасимпатомиметические, парасимпатотропные, трофо-тропные) реакции возникают при действии ацетилхолина (или других соединений холина) на холинорецепторы, субклеточные образования, клетки, ткани, органы или организм в целом. Помимо своего основного (холинергического) действия, ацетилхолин вызывает освобождение калия, связанного белками, повышает или снижает проницаемость биологических мембран, принимает участие в регуляции избирательной проницаемости эритроцитов, изменяет активность отдельных дыхательных ферментов, влияет на активность катепсинов, на обновляемость фосфатной группы в фосфолипидах, на метаболизм макроэргических фосфорных соединений, повышает устойчивость отдельных тканей и организма в целом к гипоксии. Коштоянц высказал предположение, что, осуществляя медиаторное действие, ацетилхолин вступает в круг тканевых биохимических превращений. А торможение действия ацетилхолина в какой-то мере функционально эквивалентно увеличению концентрации дофамина.

Биохимический эффект ацетилхолина заключается в том, что его присоединение к рецептору открывает канал для прохождения ионов Na и К через мембрану клетки, что ведет к деполяризации мембраны. Блокирование действия ацетилхолина чревато серьезными проблемами, вплоть до смертельного исхода. Именно в этом заключается биохимическое действие нейротоксинов. Ниже показаны структуры двух наиболее сильных нейро-токсинов - хистрионикотоксина и хлорида D-тубокурарина. Как и ацетил-холин, молекула D-тубокурарина содержит аммониевые фрагменты. Она блокирует место присоединения ацетилхолина к рецептору, исключает передачу нервного сигнала, предотвращает перенос ионов через мембрану. Создается ситуация, называемая параличом живой системы.

Влияние ацетилхолина на сердце.

Холинергические механизмы. На наружной мембране кардиомиоцитов представлены, в основном, мускаринчувствительные (М-) холинорецепторы. Доказано наличие в миокарде и никотинчувствительных (N-) холинорецепторов, однако их значение в парасимпатических влияниях на сердце менее ясно. Плотность мускариновых рецепторов в миокарде зависит от концентрации мускариновых агонистов в тканевой жидкости. Возбуждение мускариновых рецепторов тормозит активность пейсмекерных клеток синусного узла и в то же время увеличивает возбудимость предсердных кардиомиоцитов. Эти два процесса могут привести к возникновению предсердных экстрасистол в случае повышения тонуса блуждающего нерва, например ночью во время сна. Таким образом, возбуждение М-холинорецепторов вызывает снижение частоты и силы сокращений предсердий, но повышает их возбудимость.

Ацетилхолин угнетает проводимость в атриовентрикулярном узле. Это связано с тем, что под влиянием ацетилхолина возникает гиперполяризация клеток атриовентрикулярного узла вследствие усиления выходящего калиевого тока. Таким образом, возбуждение мускариновых холинорецепторов оказывает противоположное, по сравнению с активацией B-адренорецепторов, действие на сердце. При этом снижается частота сердечных сокращений, угнетается проводимость и сократимость миокарда, а также потребление миокардом кислорода. Возбудимость предсердий в ответ на применение ацетилхолина возрастает, тогда как возбудимость желудочков, напротив, уменьшается.

Ацетилхолин относится к числу самых важных нейромедиаторов мозга. Самая выдающаяся роль ацетилхолина реализуется в нейромышечной передаче, где он является возбуждающим трансмиттером. Известно, что ацетилхолин может оказывать как возбуждающее, так и ингибирующее действие. Это зависит от природы ионного канала, который он регулирует при взаимодействии с соответствующим рецептором.

Нейротрансмиттер ацетилхолин высвобождается из везикул в пресинаптических нервных терминалях и связывается как с никотиновыми рецепторами, так и мускариновыми рецепторами на поверхности клетки. Эти два типа ацетихолиновых рецепторов значительно отличается как по структуре, так и по функциям.

Ацетилхолин - уксуснокислый эфир холина, является медиатором в нервно-мышечных соединениях, в пресинаптических окончаниях мотонейронов на клетках Реншоу, в симпатическом отделе вегетативной нервной системы - во всех ганглионарных синапсах, в синапсах мозгового вещества надпочечников и в постганглионарных синапсах потовых желез; в парасимпатическом отделе вегетативной нервной системы - также в синапсах всех ганглиев и в постганглионарных синапсах эффекторных органов. В ЦНС ацетилхолин обнаружен во фракциях многих отделов мозга, иногда в значительных количествах, однако центральных холинэргических синапсов обнаружить не удалось.

Ацетилхолин синтезируется в нервных окончаниях из холина, который поступает туда с помощью неизвестного пока транспортного механизма. Половина поступившего холина образуется в результате гидролиза ранее высвободившегося ацетилхолина, а остальная часть, по-видимому, поступает из плазмы крови. Фермент холин-ацетилтрансфераза образуется в соме нейрона и примерно за 10 дней транспортируется по аксону к пресинаптическим нервным окончаниям. Механизм поступления синтезированного ацетилхолина в синаптические пузырьки пока неизвестен.

По-видимому, лишь небольшая часть (15-20%) запаса ацетилхолина, который хранится в пузырьках, составляет фракцию немедленно доступного медиатора, готовую к высвобождению - спонтанно или под влиянием потенциала действия.

Депонированная фракция может мобилизоваться только после некоторой задержки. Это подтверждается, во-первых, тем, что вновь синтезированный ацетилхолин высвобождается примерно вдвое быстрее, чем ранее присутствовавший, во-вторых, при нефизиологически высоких частотах стимуляции количество ацетилхолина, высвобождаемое в ответ на один импульс, падает до такого уровня, при котором количество ацетилхолина, высвобождаемое в течение каждой минуты, остается постоянным. После блокады поглощения холина гемихолинием из нервных окончаний высвобождается не весь ацетилхолин. Следовательно, должна быть третья, стационарная фракция, которая, возможно, не заключена в синаптические пузырьки. Видимо, между этими тремя фракциями может происходить обмен. Гистологические коррелянты этих фракций еще не выяснены, но предполагают, что пузырьки, расположенные около синаптической щели, составляют фракцию немедленно доступного медиатора, тогда как остальные пузырьки соответствуют депонированной фракции или ее части.

На постсинаптической мембране ацетилхолин связывается со специфическими макромолекулами, которые называются рецепторами. Эти рецепторы, вероятно, представляют собой липопротеин с молекулярной массой около 300 000. Ацетилхолиновые рецепторы расположены только на наружной поверхности постсинаптической мембраны и отсутствуют в соседних постсинаптических областях. Плотность их составляет около 10 000 на 1 кв. мкм.

Ацетилхолин служит медиатором всех преганглионарных нейронов, постганглионарных парасимпатических нейронов, постганглионарных симпатических нейронов, иннервирующих мерокриновые потовые железы, и соматических нервов. Он образуется в нервных окончаниях из ацетил-КоA и холина под действием холинацетилтрансферазы. В свою очередь, холин активно захватывается пресинаптическими окончаниями из внеклеточной жидкости. В нервных окончаниях ацетилхолин хранится в синаптических пузырьках и высвобождается в ответ на поступление потенциала действия и вход двухвалентных ионов кальция. Ацетилхолин относится к числу самых важных нейромедиаторов мозга.

Если концевая пластинка подвергается действию ацетилхолина в течение нескольких сотен миллисекунд, то мембрана, деполяризованная вначале, постепенно реполяризуется, несмотря на постоянное присутствие ацетилхолина, то есть постсинаптические рецепторы инактивируются. Причины и механизм этого процесса пока не изучены.

Обычно действие ацетилхолина на постсинаптическую мембрану продолжается всего 1-2 мс, потому что часть ацетилхолина диффундирует из области концевой пластинки, а часть гидролизуется ферментом ацетилхолинэстеразой (т.е. расщепляется на неэффективные компоненты холин и уксусную кислоту). Ацетилхолинэстераза в больших количествах имеется в концевой пластинке (так называемая специфическая или истинная холинэстераза), однако холинэстеразы имеются также в эритроцитах (также специфические) и в плазме крови (неспецифические, т.е. расщепляют и другие эфиры холина). Поэтому ацетилхолин, который диффундирует из области концевой пластинки в окружающее межклеточное пространство и поступает в кровоток, тоже расщепляется на холин и уксусную кислоту. Большая часть холина из крови снова поступает в пресинаптические окончания.

Действие ацетилхолина на постсинаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а на эффекторные органы - мускарином (токсин мухомора). В связи с этим возникла гипотеза о наличие двух типов макромолекулярных рецепторов ацетилхолина, и его действие на эти рецепторы называется никотиноподобным или мускариноподобным. Никотоноподобное действие блокируется основаниями, а мускариноподобное - атропином.

Вещества, действующие на клетки эффекторных органов так же, как холинэргические постганглионарные парасимпатические нейроны, называются парасимпатомиметическими, а вещества, ослабляющие действие ацетилхолина - парасимпатолитическими.

Список литературы

холинергический рецептор ацетилхолин нейрон

1. Харкевич Д.А. Фармакология. М.: ГЭОТАР-МЕД, 2004

2. Зеймаль Э.В., Шелковников С.А. - Мускариновые холинорецепторы

3. Сергеев П.В., Галенко-Ярошевский П.А., Шимановский Н.Л., Очерки биохимической фармакологии, М., 1996.

4. Хуго Ф. Нейрохимия, М, "Мир", 1990 г.

5. Сергеев П.В., Шимановский Н.Л., В.И. Петров, Рецепторы, Москва - Волгоград, 1999 г.

Ацетилхолин


Холин и ацетилхолин

В организме холин используется для синтеза определенных химических веществ мозга, для мобилизации жира (особенно при удалении его из печени) и для нормального прохождения нервных импульсов, но организм может синтезировать его из других пищевых компонентов при отсутствии холина в рационе. Такое отсутствие может случиться только в экстремальном случае, поскольку холин присутствует в большом количестве продуктов. Его можно найти во многих растительных продуктах в виде свободного холина, в животных источниках и в сое в виде составной части молекулы лецитина.

Чтобы понять роль холина в организме, нужно представить себе работу нервов. Упрощенно это происходит так: чтобы нервный импульс мог перескочить с одного отрезка нерва на другой, необходимо посредничество ряда субстанций, наиважнейшей составной частью которых являются ацетилхолин и его часть - холин. Как только импульс собрался совершить «скачок», ацетилхолин подбрасывает холин со «склада», находящегося вблизи нервного окончания, и «уполномочивает» импульс к переходу с одной клетки в другую. Это действие совершается многократно и без всякого участия нашего сознания. Но если ацетилхолин не действует, появляется очень опасная болезнь - дискенезия, при которой заболевший теряет способность координировать свои движения. При тяжелых формах болезни на лице непроизвольно появляются гримасы. Лечение бывает очень трудным. Но известны случаи, когда хорошие результаты давали инъекции холина, которые помогают и пациентам, страдающим депрессией, бессонницей, слабостью, потерей массы тела, беспокойством.

Самочувствие таких больных значительно улучшается, у некоторых полностью исчезают болезненные симптомы. У всех проходит депрессия.

Основными пищевыми источниками холина являются мясо, творог, сыр, бобовые культуры, капуста, свекла.

Холин сам по себе не играет никакой роли, но он входит составной частью в чрезвычайно важное вещество мозга (ацетилхолин), а также необходим для синтеза большинства липидных компонентов мембран клеток нашего организма. Пищевой холин (в форме лецитина) увеличивал долю "хорошего" холестерина высокой плотности и уменьшал долю "плохого" холестерина низкой плотности. Такая замена могла бы нормализовать величины липидов крови и уменьшить риск сердечных заболеваний. Холин играет некоторую роль в мозговых процессах, связанных с обучением и запоминанием, которые ухудшаются с возрастом, возможно в силу его роли в продуцировании химических веществ мозга. Дефицит холина может содействовать развитию цирроза печени у алкоголиков, с другой стороны, рацион, богатый холином, может защищать печень от алкогольного разрушения. При дефиците холина возникают инфильтраты жирового перерождения, весьма похожие на те, которые возникают при алкогольном разрушении печени.

Холин является незаменимым витаминоподобным соеди-
нением, получаемым с пищей в достаточном количестве, и по-
следствия его дефицита наблюдаются только в искусственных
условиях. Синтез ацетилхолина осуществляется в основном в
пресинаптических окончаниях с помощью фермента холина-
цетилтрансферазы. Затем медиатор переносится в пустые ве-
зикулы и хранится в них до момента выброса.
Ацетилхолин в качестве медиатора работает в трех функ-
циональных блоках нервной системы: в нервно-мышечных
синапсах, периферической части вегетативной нервной систе-
мы и некоторых областях ЦНС.
Ацетилхолин является медиатором мотонейронов нервной
системы, которые расположены в передних рогах серого веще-
ства спинного мозга и двигательных ядрах черепных нервов.
Их аксоны направляются к скелетным мышцам и, разветвля-
ясь, образуют нервно-мышечные синапсы. При этом один аксон
может устанавливать контакт с сотнями мышечных волокон,
но каждое мышечное волокно управляется только одним си-
напсом. Размер нервно-мышечных синапсов в десятки раз боль-
ше, чем синапсов в ЦНС, и пришедший по аксону мотонейрона
даже одиночный ПД вызывает выделение значительного ко-
личества ацетилхолина (этап /, рис. 3.24). В результате разви-
вающаяся на постсинаптическои мембране деполяризация ока-
зывается настолько велика, что всегда запускает ПД мышечной
клетки (//), который приводит к выбросу Са2+ из каналов ЭПС
(III), активации двигательных белков и сокращению (IV).
Периферическое звено вегетативной нервной системы со-
стоит из двух нейронов: тело первого (преганглионарного) на-
ходится в ЦНС, а аксон направляется к вегетативному ганг-
лию; тело второго (постганглионарного) находится в ганглии,
а аксон иннервирует гладкие мышечные или железистые
клетки внутренних органов. Ацетилхолин в качестве меди-
атора вырабатывается во всех преганглионарных клетках, а
также в постганглионарных клетках парасимпатической час-
ти вегетативной нервной системы (рис. 3.25). Некоторые пост-
ганглионарные симпатические волокна (активирующие пото-
вые железы и вызывающие расширение сосудов) также секре-
тируют ацетилхолин .



В ЦНС ацетилхолин вырабатывается частью нейронов рети-
кулярных ядер моста и интернейронами полосатого тела ба-
зальных ганглиев и некоторых других локальных зон. Рассмат-
ривается роль этого медиатора в регуляции уровня бодрство-
вания, а также в системах памяти, двигательных системах.
Доказана эффективность применения антагонистов ацетилхо-
лина при ряде двигательных нарушений.
Выделяясь из пресинаптического окончания, ацетилхолин
действует на постсинаптические рецепторы. Эти рецепторы
неоднородны и различаются локализацией и рядом свойств.
Выделено два типа рецепторов (рис. 3.26): первый, помимо
ацетилхолина, возбуждается под действием алкалоида табака
никотина (никотиновые рецепторы), второй тип активируется
ацетилхолином и токсином мухомора мускарином (мускари-
новые рецепторы).
Никотиновые рецепторы являются классическим приме-
ром ионотропных рецепторов: их ионный канал входит в со-
став рецептора и открывается сразу после присоединения аце-
тилхолина. Канал этот характеризуется универсальной про-
ницаемостью для положительно заряженных ионов, но в
обычных условиях (при открытии на фоне ПП) в связи с нико-
тиновыми рецепторами наблюдается в основном входящий
Na+-TOK, вызывающий деполяризацию мембраны и возбужде-
ние нейрона.

DMAE или ДМАЭ (DiMethylAminoEthanol)
(синонимы: Deaner, Deanol)

Диметиламиноэтанол, в дальнейшем ДМАЭ (ДМАЕ) , одна из важнейших добавок для продления жизни. В одном из экспериментов, препарат ацефен , сделанный на основе ДМАЭ (ДМАЕ) , продлил жизнь животных на 36%. Встречаются и более впечатляющие цифры - 50%, правда, без ссылок на источники.

Это сравнимо с теми результатами, которые даёт депренил. У того и другого препарата есть свои преимущества. Например, депренил даёт более высокие результаты и особенно на особях мужского пола. В то же время, ДМАЕ более естественное природное вещество, которое присутствует в организме и включается в состав некоторых детских комплексов.
Возможно для женщин именно ДМАЕ или ацефен следует признать препаратом N1 для долголетия. Впрочем, ДМАЕ обладает ещё целым рядом замечательных свойств.

1. В организме имеется одно из самых важнейших веществ - ацетилхолин . Это нейропередатчик или нейрогормон, который отвечает за передачу и регулирование сигналов от одной нервной клетки к другой, как в мозге, так и во всей ЦНС. То есть, именно ацетилхолин делает наш организм единым целым. Недостаток ацетилхолина ухудшает регулировку и работу всего организма - фактически организм распадается быстрее обычного.

Заметим, что до 75 % населения могут иметь дефицит ацетилхолина. То есть, многим его не хватает даже для удовлетворения физиологической потребности. Для продления же жизни ацетилхолина требуются в несколько раз больше.
От недостатка ацетилхолина возникают: вялость, усталость, депрессия, замедленная реакция, затруднения в мышлении, плохая память, раздражительность и проч.

ДМАЭ (ДМАЕ) при попадании в организм превращается в ацетилхолин.

Крайне важно отметить: для продления жизни нам необходимо отказаться от излишка животных продуктов и перейти преимущественно на растительные. Такое питание может усугубить дефицит ацетилхолина. Поэтому, с точки зрения продления жизни, мы должны выбрать такую стратегию: преимущественно растительное питание и употребление ДМАЕ!

2. ДМАЭ (ДМАЕ) обладает выраженным антиоксидантным действием. Защищает клетки от повреждения их наиболее опасными разновидностями свободных радикалов. Также препятствует перекрёстному связыванию молекул.

3. С возрастом в клетках мозга, ЦНС, сердца, кожи и др. накапливается токсический пигмент липофусцин, который отравляет клетки. Под старость каждая клетка может на 30% быть забита липофусцином. ДМАЭ (ДМАЕ) в срок от нескольких месяцев до 2 лет удаляет до половины и более этого мусора.

4 . ДМАЭ (ДМАЕ) значительно улучшает свойства крови; захват и перенос кислорода к тканям. Показано также, что добавление ДМАЭ (ДМАЕ) в консервированную кровь увеличивает срок её хранения в 2 раза.

Все эти эффекты вызывают выраженное продление жизни, но кроме этого ДМАЭ (ДМАЕ):

Как и все ноотропы, выраженно стимулирует мозговую функцию: усиливает память, концентрацию внимания, познавательные способности; улучшает настроение, в правильных дозировках улучшает сон, вызывая яркие реалистичные сновидения;

Повышает энергетический статус организма, в связи с этим используется спортсменами;

Повышает упругость кожи, её тонус, внешний вид.

Способ применения.
Диапазон дозировок ДМАЭ (ДМАЕ) от 100 до 1500 мг в сутки.
Для продления жизни рекомендуется ограничиться дозировкой 200-500 мг сутки, длительными курсами или почти постоянно.
Для улучшения общего состояния, повышения умственных и физических способностей курсами по 1-3 мес. по 500-1000 мг и более в сутки.
Начинать приём с небольших доз с постепенным увеличением.
Принимают утром и днём.
При хорошей переносимости можно до еды, в противном случае во время еды.



Никотиновые рецептры расположены на постсинаптиче-
ской мембране поперечно-полосатых волокон скелетных
мышц (нервно-мышечные синапсы); в синапсах вегетативных
ганглиев и в меньшем количестве, чем мускариновые рецеп-
торы, в ЦНС. Областью, наиболее чувствительной к никоти-
ну, являются вегетативные ганглии, поэтому первые попытки
курения приводят к значительным нарушениям в деятельнос-
ти органов: скачкам артериального давления, тошноте, голо-
вокружению. По мере привыкания сохраняется в основном
симпатический компонент действия: никотин начинает рабо-
тать преимущественно как стимулятор многих систем орга-
низма. Присутствует также и центральное активирующее
влияние (на головной мозг) ацетилхолина . Сверхдозы никоти-
на E0 и более мг) вызывают резкое учащение сердцебиения,
судороги и остановку дыхания.



Во время курения никотин действует как слабый наркоти-
ческий препарат-стимулятор, вызывая развитие не только
привыкания, но и зависимости. Наркотическая зависи-
мость - это ситуация, когда организм включает поступаю-
щий извне препарат в свой метаболизм, т. е. начинает «рас-
считывать» на его постоянный приток. При отказе от препара-
та происходит сбой в использующих его системах мозга:
наблюдается резкое ухудшение самочувствия, депрессия {абс-
тинентный синдром или синдром отмены)- Человеку, по-
павшему в зависимость, наркотик необходим уже не столько
для того, чтобы почувствовать бодрость и эйфорию, сколько
для возврата хотя бы к относительно нормальному уровню
жизнедеятельности.
Наиболее известным антагонистом никотиновых рецепто-
ров является тубокурарин - активное действующее начало
яда некоторых южноамериканских растений. Основным «мес-
том приложения» его влияния являются нервно-мышечные
синапсы (рис. 3.27, вариант /). При этом происходит последо-
вательное расслабление и паралич мышц пальцев, затем глаз,
рук и ног, шеи, спины и, наконец, дыхательных.
Мускариновые рецепторы являются метаботропными
(рис. 3.26, б); они связаны с G-белками, и присоединение к ним
ацетилхолина приводит к синтезу вторичных посредников.
Выделяют две основные локализации мускариновых ре-
цепторов: синапсы, образуемые постганглионарными (в основ-
ном парасимпатическими) вегетативными волокнами и ЦНС.
В первом случае в качестве вторичных посредников использу-
ются инозитолтрифосфат и диацилглицерол; во втором -
цГМФ. Ионные последствия возбуждения мускариновых ре-
цепторов весьма разнообразны: в сердце наблюдается увеличе-
ние проводимости для ионов К+, что приводит к гиперполяри-
зации и снижению частоты сокращений; в гладких мышцах
отмечаются изменения проводимости как для К+, так и для
Na+ (возможна гипер- или деполяризация в зависимости от
конкретного органа).
В ЦНС отмечается снижение проницаемости мембраны
для К+ (деполяризация; возбуждающее действие), но синап-
сы, содержащие мускариновые рецепторы, могут распола-
гаться как на тормозных, так и на возбуждающих нейронах
коры и базальных ганглиев. В связи с этим последствия бло-
кады либо активации мускариновых рецепторов на поведен-
ческом уровне оказываются очень индивидуальны; их выра-
женность и направленность зависит от конкретной химиче-
ской структуры того или иного препарата.
Эффекты мускарина носят преимущественно парасимпа-
тический характер: при отравлении мухоморами наблюдается
тошнота, повышенное пото- и слюноотделение, слезотечение,
боли в животе, снижение артериального давления и сердечной
активности.
Классическим антагонистом мускариновых рецепторов яв-
ляется атропин - токсин белены и дурмана. Его перифериче-
ские эффекты прямо противоположны действию мускарина:
происходит снижение тонуса мышц желудочно-кишечного
тракта, учащается сердцебиение, прекращается слюноотделе-
ние (сухость во рту), расширяются зрачки, наблюдаются и
центральные эффекты (двигательное и речевое возбуждение,
галлюцинации).




Инактивация ацетилхолина происходит непосредственно в
синаптической щели. Ее осуществляет фермент ацетилхоли-
нэстераза, разлагающий медиатор до холина и остатка уксус-
ной кислоты, затем холин всасывается в пресинаптическое
окончание и может вновь использоваться для синтеза ацетил-
холина.
Ацетилхолинэстераза имеет активный центр, узнающий
холин, и один активный центр, «отрывающий» ацетильную
группу от исходной молекулы. Последний часто является мес-
том атаки специфических блокаторов (рис. 3.27, вариант //).
Примером подобного блокатора служит прозерин (неостиг-
мин), применяемый при миастении, которая встречается при-
мерно у трех человек на тысячу (чаще у женщин). Симптома-
ми заболевания служат быстрая мышечная утомляемость, не-
произвольное опускание век, замедленное жевание. Такие
больные очень чувствительны к тубокурарину, а введение бло-
каторов ацетилхолинэстеразы ослабляет патологические про-
явления. В настоящее время известно, что у значительной
части больных миастенией число никотиновых рецепторов
примерно на 70% меньше, чем в норме. Причина этого состо-
ит в том, что иммунная система больного вырабатывает анти-
тела на никотиновые рецепторы. Эти антитела ускоряют раз-
рушение рецепторов на мембране, ослабляя передачу в нерв-
но-мышечном синапсе (рис. 3.27, вариант IV).
Прозерин и сходные с ним препараты называют обратимы-
ми блокаторами ацетилхолинэстеразы, их действие прекра-
щается через несколько часов после введения, кроме того, су-
ществуют необратимые блокаторы того же фермента. В этом
случае вещество, нарушающее работу ацетилхолинэстеразы,
вступает с белком в устойчивую химическую связь и выводит
его из строя. Таким образом действуют фосфорорганические
соединения, применяемые как препараты против насекомых
(инсектициды): хлорофос, тиофос и сходные с ними соедине-
ния могут вызвать у человека сужение зрачков, потливость,
снижение артериального давления, подергивания мышц.
Еще более сильными агентами-блокаторами являются раз-
личные нервно-паралитические газы (зарин): легко проникая
через все барьеры организма, они вызывают судороги, потерю
сознания и паралич. Смерть наступает от остановки дыхания.
Для немедленного ослабления эффектов отравляющих газов
рекомендуется использование атропина; для восстановления
деятельности ацетилхолинэстеразы - особые вещества-реак-
тиваторы, «отрывающие» блокатор от фермента.
Другим примером разрушительного действия на ацетилхо-
линергический (использующий ацетилхолин в качестве меди-
атора) синапс являются нейротоксины змей. Например, яд коб-
ры содержит альфа-нейротоксин, необратимо связывающийся
с никотиновым рецептором и блокирующий его, а также бе-
та-нейротоксин, который тормозит выделение медиатора из
пресинаптического окончания (рис. 3.27, варианты /, III).

Первую часть рассказа о нейромедиаторах «Атлас» посвятил молодежным дофамину, норадреналину и серотонину. Во втором посте речь пойдет о менее известных медиаторах, которые выполняют важную невидимую работу: стимулируют и тормозят другие нейромедиаторы, помогают нам учиться и запоминать.

Ацетилхолин

Это первый нейромедиатор, который открыли ученые. Он отвечает за передачу импульсов двигательными нейронами — а значит, за все движения человека. В центральной нервной системе нейромедиатор берет на себя стабилизирующие функции: выводит мозг из состояния покоя, когда необходимо действовать, и наоборот, тормозит передачу импульсов, когда необходимо сосредоточиться. В этом ему помогают два типа рецепторов — ускоряющие никотиновые и тормозящие мускариновые.

Ацетилхолин играет важную роль в процессе обучения и формирования памяти. Для этого требуется как способность фокусировать внимание (и тормозить передачу отвлекающих импульсов), так и способность переключаться с одного предмета на другой (и ускорять реакцию). Активная работа мозга, например, при подготовке к экзамену или годовому отчету, приводит к повышению уровня ацетилхолина. Если мозг долгое время бездействует, специальный фермент ацетилхолинэстераза разрушает медиатор, и действие ацетилхолина слабеет. Идеальный для учебы, ацетилхолин будет плохим помощником в стрессовых ситуациях: это медиатор размышления, но не решительных действий.

Переизбыток ацетилхолина в организме вызывает спазм всех мышц, судороги и остановку дыхания — именно на такой эффект рассчитаны некоторые нервно-паралитические газы. Недостаток ацетилхолина приводит к развитию болезни Альцгеймера и других видов старческой деменции. В качестве поддерживающей терапии пациентам назначают препарат, блокирующий разрушение ацетилхолина — ингибитор ацетилхолинэстеразы.

Ген CHRNA3 кодирует никотиновый рецептор ацетилхолина, на который может воздействовать никотин. На первом этапе вещество действует на симпатическую систему организма, которая отвечает за спазм гладкой мускулатуры и сокращение сосудов. Поэтому у начинающих курильщиков сигареты вызывают скорее тошноту и бледность кожи, чем восторг. Но со временем никотин достигает клеток головного мозга и активизирует рецепторы ацетилхолина. Так как этим занимается и никотин, и ацетилхолин одновременно, мозг пытается скорректировать «двойную подачу», и через некоторое время нейроны головного мозга сокращают нормальное производство ацетилхолина. С этого момента никотин будет нужен курильщику по каждому поводу — с утра чтобы взбодриться, после совещания наоборот, чтобы успокоиться, после обеда — чтобы хоть немного подумать о вечном.

Полиморфизм гена CHRNA3 влияет на скорость формирования никотиновой зависимости и, как следствие, на риск развития рака лёгких, вызванного курением.

Аденозин

Все химические реакции в организме требуют затраты энергии. В качестве валюты в этом процессе используется молекула аденина с несколькими основаниями фосфорной кислоты. Сразу после «зарплаты» у вас на карточке окажется «триста рублей» — молекула аденозинтри фосфат с тремя остатками фосфорной кислоты. На каждую транзакцию уходит по сто рублей, соответственно, после первой «покупки» на счету останется всего двести рублей (аденозинди фосфат), после второй — сто рублей (аденозинмоно фосфат), после третьей — ноль рублей.

Купюра в ноль рублей — и есть аденозин. Как нейромедиатор он отвечает за чувство усталости и засыпание. Во время сна купюрам в ноль-ноль рублей дорисовывают троечки, аденозин трансформируется в аденозинтрифосфат, и мы с новыми силами готовы вернуться к работе.

Есть способ обмануть «банковскую систему»: заблокировать рецепторы аденозина и уйти в кредит. Именно этим и занимается кофеин — позволяет игнорировать усталость и продолжать работать. При этом он не приносит настоящей энергии, а только дает тратить деньги, как если у вас всё ещё есть триста рублей. Как и за любой кредит, за перерасход приходится расплачиваться — большей усталостью, заторможенностью внимания, привыканием. Тем не менее, кофеиносодержащие кофе, чай и шоколад — самый популярный стимулятор в мире.

Всего известно четыре вида рецепторов аденозина, которые активируются и блокируются аденозином. Ген ADORA2A кодирует рецепторы аденозина второго типа, которые участвуют в активации противовоспалительных процессов, формировании иммунного ответа, регуляции боли и сна. От работы этого рецептора зависит скорость реакции организма на ранение и травму.

Глутамат

Глутаминовая кислота в форме глутамата — пищевая аминокислота, которая содержится в продуктах животного происхождения. Вкусовые рецепторы воспринимают глутамат как индикатор белковой пищи — а значит питательной и полезной — и оставляют заметку, что было вкусно, и надо повторить. В двадцатом веке японские ученые выяснили принцип восприятия этого вкуса (они назвали его «умами» — вкусный), и со временем глутамат натрия стал популярной пищевой добавкой. Именно благодаря ему иногда сложно устоять перед соблазном съесть лапшу доширак. Как пищевая добавка глутамат не влияет напрямую на работу нейронов, поэтому его «передозировка» в худшем случае обойдется головной болью.

Глутамат — это не только пищевая аминокислота, но и важный нейромедиатор, рецепторы которого есть у 40% нейронов головного мозга. Он не имеет собственной «смысловой нагрузки», а только ускоряет передачу сигнала другими рецепторами — дофаминовыми, норадреналиновыми, серотониновыми и т.д. Эта функция позволяет глутамату формировать синаптическую пластичность — способность синапсов регулировать свою активность в зависимости от реакции постсинаптических рецепторов. Этот механизм лежит в основе процесса обучения и работы памяти.

Снижение активности глутамата приводит к вялости и апатии. Переизбыток — к «перенапряжению» нервных клеток и даже их гибели, как если бы на электрическую сеть дали большую нагрузку, чем она способна выдержать. «Перегорание» нейронов — эксайтотоксичность — наблюдается после приступов эпилепсии и при нейродегенеративных заболеваниях.

Две группы генов кодируют белки-транспортеры глутамата. Гены группы EAAT отвечают за натрий-зависимые белки — те самые, которые участвуют в процессе запоминания. Мутации в генах этой группы повышают риск инсульта, болезни Альцгеймера, болезни Гентингтона, бокового амиотрофического склероза. Мутации в генах везикулярных белков-транспортеров группы VGLUT ассоциированы с риском шизофрении.

Гамма-аминомасляная кислота

У каждой инь есть свой ян, и у глутамата есть вечный его противник, с которым он тем не менее неразрывно связан. Речь идет о главном тормозном нейромедиаторе — гамма-аминомасляной кислоте (ГАМК или GABA). Так же как и глутамат, ГАМК не вносит новых цветов в палитру мозговой активности, а только регулирует активность других нейронов. Так же как и глутамат, ГАМК охватил сетью своих рецепторов около 40% нейронов головного мозга. И глутамат, и ГАМК синтезируются из глутаминовой кислоты и по существу являются продолжением друг друга.

Для описания эффекта ГАМК идеально подходит поговорка «тише едешь - дальше будешь»: тормозящий эффект медиатора позволяет лучше сосредоточиться. ГАМК снижает активность самых разных нейронов, в том числе связанных с чувством страха или тревоги и отвлекающих от основной задачи. Высокая концентрация ГАМК обеспечивает спокойствие и собранность. Снижение концентрации ГАМК и нарушение баланса в вечном сопротивлении с глутаматом приводит к синдрому дефицита внимания (СДВГ). Для повышения уровня ГАМК хорошо подходят прогулки, йога, медитации, для снижения — большинство стимуляторов.

У гамма-аминомасляной кислоты два типа рецепторов — быстрого реагирования GABA-A и более медленного действия GABA-B. Ген GABRG2 кодирует белок рецептора GABA-A, который резко снижает скорость передачи импульсов в головном мозге. Мутации в гене связаны с эпилепсией и фебрильными судорогами, которые могут возникать при высокой температуре.

Если дофамин, серотонин и норадреналин — голливудские актеры большой нейронной киноиндустрии, то герои второй части рассказа о нейромедиаторах скорее работают за кадром. Но без их незаметного вклада большое кино было бы совсем другим.

В следующей части

Роль ацетилхолина в организме.

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Источник: "Лекарственные средства " под редакцией М.Д. Машковского.

Ацетилхолиновые рецепторы.

Трансмембранные рецепторы, лигандом которых является ацетилхолин. Ацетилхолин служит нейротрансмиттером как в пре-, так и в постганглионарных синапсах парасимпатической системы и в преганглионарных симпатических синапсах, в ряде постганглионарных симпатических синапсов, нервно-мышечных синапсах (соматическая нервная система), а также в некоторых участках ЦНС. Нервные волокна, выделяющие ацетилхолин из своих окончаний, называются холинергическими.

Синтез ацетилхолина происходит в цитоплазме нервных окончаний; запасы его хранятся в виде пузырьков в пресинаптических терминалях. Возникновение пресинаптического потенциала действия ведет к высвобождению содержимого нескольких сотен пузырьков в синаптическую щель. Ацетилхолин, выделяющийся из этих пузырьков, связывается со специфическими рецепторами на постсинаптической мембране, что повышает ее проницаемость для ионов натрия, калия и кальция и приводит к появлению возбуждающего постсинаптического потенциала. Действие ацетилхолина ограничивается путем его гидролиза с помощью фермента ацетилхолинэстеразы.

Типы ацетилхолиновых рецепторов:

    Никотиновый ацетилхолиновый рецептор.

Никотин

Никотиновый ацетилхолиновый рецептор (н-холинорецептор, nACh-receptor) - подвид ацетилхолиновых рецепторов, который обеспечивает передачу нервного импульса через синапсы и активируется никотином (кроме ацетилхолина).

Никотиновый ацетилхолиновый рецептор был открыт в начале XX века, как «рецепторную структуру никотина», приблизительно за 25-30 лет до того, как была исследованная его роль в проведении нервных сигналов, генерированных с помощью ацетилхолина. При попадании ацетилхолина (ACh) на молекулу данного рецептора приоткрывается проницаемый для катионов канал, что приводит к деполяризации клеточной мембраны и генерации нервного импульса в нейроне или сокращение мышечного волокна (в случае нервно-мышечного синапса).

Данный рецептор найден в химических синапсах как в центральной, так и в периферической нервной системе, в нервно-мышечных синапсах, а также в эпителиальных клетках многих видов животных.

Физиология и фармакология

Электрофизиологическая характеристика никотиновых рецепторов мышечной ткани впервые была дана благодаря внутриклеточному отводу электрических потенциалов; кроме того, никотиновый рецептор был одним из первых, на которые удалось записать электрические токи, которые проходят через единичный рецепторный канал. Используя последний подход удалось доказать, что ионный канал данного рецепора существует в дискретных открытом и закрытом состояниях. В открытом состоянии рецептор может пропускать ионы Na+ , К+ и, в меньшей мере, двухвалентные катионы; проводимость ионного канала при этом является постоянной величиной. Тем не менее, время существования канала в открытом состоянии является характеристикой, которая зависит от напряжения приложенного к рецептору потенциала, при этом рецептор стабилизируется в открытом состоянии при переходе от малых значений напряжения (деполяризация мембраны) к большим (гиперполяризация). Долгодействующая аппликация ацетилхолина и других агонистов рецептора приводит к снижению его чувствительности к рецепторной молекуле и увеличению времени пребывания ионного канала в закрытом состоянии - то есть у никотинового рецептора наблюдается явление десенсетизации.

Классической характеристикой никотиновых рецепторов в нервных ганглиях и в главном мозге есть холинергического ответа на электрическое раздражение, которые блокируются дигидро-β-эритроидином; кроме того, для этих рецепторов характерное високоафинноне связывание с тритий-меченным никотином. αBGT-чувствительные рецепторы в нейронах гиппокампа характеризуются низкой чувствительностью к ацетилхолину, в отличие от αBGT-нечувствительных рецепторов. Селективным и оборотным конкурентным антагонистом αBGT-чувствительных рецепторов является метилликаконитин, а некоторые производные анабезиина вызывают селективное активационное влияние на эту группу рецепторов. Проводимость ионного канала αBGT-чувствительных рецепторов является довольно высокой (73pS); также им присущая относительно высокая проводимость ионов кальция сравнительно с ионами цезия. Данный рецептор обладает необыкновенными вольт-зависимыми свойствами: обще-клеточный ток, записанный в физиологическом состоянии, при наложении деполяризационных величин электрического потенциала указывает на достоверное уменьшение прохождение ионов через ионные каналы; при этом это явление регулируется концентрацией в растворе ионов Mg2+. Для сравнения, никотиновые рецепторы на мышечных клетках не претерпевают никаких изменений ионного тока при изменении значений мембранного электрического потенциала, а N-метил-D-аспартатний рецептор, которому также присущая высокая относительная проницаемость для ионов Са2+ (PCa/PCs 10.1), обладает обратной картиной изменения ионных токов в ответ на смену электрического потенциала и наличие ионов магния: при повышении электрического потенциала до гиперполяризущих величин и повышении концентрации ионов Mg2+ ионный ток через данный рецептор блокируется.

Другое важное свойство αBGT-чувствительных нейрональных никотиновых рецепторов - это их реакция на стимуляцию. Экспозиция высоких концентраций ацетилхолина приводит к очень быстрой десенсетизации ответа отдельного канала и быстрого падения электрического ответа всей клетки. Повторная экспозиция коротких импульсов ацетилхолина также приводит к уменьшению максимальной амплитуды рецепторного ответа. При этом энергетический подкорм клетки высокоэнергоёмкими молекулами (АТФ, фосфокреатин, креатин-фосфокиназа) или промежуточными продуктами их метаболизма способно предотвратить такое уменьшение. Почти все аспекты функционирования αBGT-чувствительных никотиновых рецепторов, включая эффективность агонистов, кооперативные эффекты, а также фракционирование по активности и десенсетизация, регулируются внешнеклеточной концентрацией Са2+. Такая регуляция может быть особенно важной в случаях, когда рецепторы расположены на дендритах.

В дополнение к селективной активации рецепторов ацетилхолинподобными агонистами, все подтипы никотиновых рецепторов активируются производными физостигмина; тем не менее, такая активация присущая только низкочастотным токам единичных рецепторов, которые не могут быть приглушены антагонистами ацетилхолина.

Потрясающая книга про интровертов и экстравертов.
Я так не люблю узкие деления на типы темперамента, но в данной книге (хоть автор максимально разграничивает эти два типа) там много интересного и точно определяющего, что оторваться почти невозможно.

"Дофамин – это мощный нейромедиатор, самым тесным образом связанный с движением, вниманием, состоянием бдительности и познавательными процессами. Рита Картер в своей книге «Картирование ума» утверждает: «Когда дофамина слишком много, это, по-видимому, вызывает галлюцинации и приводит к паранойе. Слишком малое количество дофамина, как известно, вызывает тремор и приводит к неспособности произвольно делать движение, а также, судя по всему, вызывает чувство бессмысленности существования, апатии и ощущение несчастья. Недостаточное количество дофамина также приводит к ослаблению внимания, неспособности сосредоточиваться, разнообразным нездоровым пристрастиям и уходу в себя». Поэтому совершенно необходимо, чтобы в организме присутствовало достаточное количество дофамина. Этот нейромедиатор выполняет также другую очень важную функцию.
Поскольку экстраверты отличаются малой чувствительностью к дофамину и при этом требуют большие количества этого нейромедиатора, то каким образом они его получают в нужной дозе? Определенные части мозга выделяют некоторое количество дофамина. Но экстравертам, чтобы мозг произвел больше дофамина, нужен и его сообщник, адреналин, который выделяется при действии симпатической нервной системы. Таким образом, чем более активен экстраверт, тем больше «доз счастья» выстреливается в кровь и тем больше дофамина производит мозг. Экстраверты чувствуют себя хорошо, когда они куда-то отправляются и встречаются с людьми.
Интроверты, со своей стороны, очень чувствительны к дофамину. Если его слишком много, они начинают чувствовать перевозбуждение. Интроверты используют как доминирующий совсем другой нейромедиатор – ацетилхолин.

Ацетилхолин – это еще один важный нейромедиатор, связанный со многими жизненно важными функциями мозга и всего организма. Он влияет на внимание и познавательные процессы (особенно основанные на восприятии), на способность сохранять спокойную бдительность и использовать долгосрочную память, активизирует произвольные движения. Он стимулирует ощущение удовлетворенности в процессе мышления и чувствования. Многие исследования последнего времени укрепляют наше понимание процессов, происходящих в мозге и во всем организме интроверта.
Ацетилхолин был первым из идентифицированных нейромедиаторов, но, по мере того как распознавались и другие, фокус внимания исследователей переместился на них. Однако совсем недавно была обнаружена связь между недостатком ацетилхолина и болезнью Альцгеймера. Открытие вызвало новые исследования этого нейромедиатора и его связи с хранилищем памяти и сновидениями. По-видимому, ацетилхолин играет важную роль в процессе сна и видении снов. Мы видим сны, когда находимся в стадии быстрого сна. Ацетилхолин включает эту стадию и запускает механизм сновидений, после чего «парализует» наше тело (отключает функцию произвольного движения), с тем чтобы мы не могли «выделывать» то, что видим во сне. Исследователи находят, что нам нужен сон, чтобы закодировать воспоминания, перемещая их в фазе быстрого сна из краткосрочной памяти в долгосрочную. Как утверждает Роналд Котьюлак в своей книге «Ум изнутри»: «Адетилхолин выступает в роли масла, которое запускает механизм функции памяти. Когда оно высыхает, механизм замерзает». Тут есть одна любопытная деталь. Снижению уровня ацетилхолина препятствует эстроген. В этом состоит одна из причин, почему во время менопаузы, когда уровень эстрогена уменьшается, женщины начинают ощущать ухудшение памяти. Итак, интровертам требуется ограниченное количество дофамина, но уровень ацетилхолина должен быть высоким, тогда они могут чувствовать себя спокойно, не впадать в депрессию или беспокойство. Это довольно узкая зона психологического комфорта.
Открытие используемых интровертным и экстравертным мозгом нейромедиаторов, по сути, кардинально, поскольку из него следует, что, когда мозг выделяет их, они также задействуют автономную нервную систему. Это система, которая соединяет ум с телом и оказывает мощное влияние на принимаемые нами решения по поводу собственного поведения и реакции на окружающий мир. Я думаю, что цепочка нейромедиаторов, проходящих теми или иными путями, и способ их соединения с различными частями автономной нервной системы являются основным ключом к разгадке тайны темперамента. В то время как экстраверты соединены с дофаминово-адреналиновой энергозатратной симпатической нервной системой, интроверты связаны с ацетилхолиновой, энергосберегающей, парасимпатической нервной системой."

Дальше даже описывается работа мозга интроверта и экстраверта. Интересно, ведь в любом организме человека синтезируются эти нейромедиаторы, след. логично предположить, что если повысить дозу дофамина (внезапно начать прыгать с парашюта или участвовать в гонках), мозг должен как бы перестроиться на более экстравертное мышление... Или напротив, ограничив дофамин (став отшельником в пещере) и увеличив медитации и осмысленность существования, организм начнет вырабатывать больше ацетилхолина (привет яркие сны!).
По сути именно удачная попытка освоить что-то новое и изначально не совсем привычное (может даже неинтересное для экстраверта или изматывающее для интроверта), позволяет человеку быть мультипаспорт полноценно развитым существом). Быть и глубоко духовным и раскованно общественным.
По крайней мере хотелось бы в это верить, иначе печалька.

"Неисправимый интроверт" Марти Ольсен Лэйни