Реакции протекающие с разной скоростью. Скорость химической реакции

Скорость химической реакции зависит от многих факторов, включая природу реагирующих веществ, концентрацию реагирующих веществ, температуру, наличие катализаторов. Рассмотрим эти факторы.

1). Природа реагирующих веществ . Если идёт взаимодействие между веществами с ионной связью, то реакция протекает быстрее, чем между веществами с ковалентной связью.

2.) Концентрация реагирующих веществ . Чтобы прошла химическая реакция, необходимо столкновение молекул реагирующих веществ. То есть молекулы должны настолько близко подойти друг к другу, чтобы атомы одной частицы испытывали на себе действие электрических полей другой. Только в этом случае будут возможны переходы электронов и соответствующие перегруппировки атомов, в результате которых образуются молекулы новых веществ. Таким образом, скорость химических реакций пропорциональна числу столкновений, которое происходит между молекулами, а число столкновений, в свою очередь, пропорционально концентрации реагирующих веществ. На основании экспериментального материала норвежские учёные Гульдберг и Вааге и независимо от них русский учёный Бекетов в 1867 году сформулировали основной закон химической кинетики – закон действующих масс (ЗДМ): при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени их стехиометрических коэффициентов. Для общего случая:

закон действующих масс имеет вид:

Запись закона действующих масс для данной реакции называют основным кинетическим уравнением реакции . В основном кинетическом уравнении k – константа скорости реакции, которая зависит от природы реагирующих веществ и температуры.

Большинство химических реакций является обратимыми. В ходе таких реакций продукты их по мере накопления реагируют друг с другом с образованием исходных веществ:

Скорость прямой реакции:

Скорость обратной реакции:

В момент равновесия:

Отсюда закон действующих масс в состоянии равновесия примет вид:

,

где K – константа равновесия реакции.

3) Влияние температуры на скорость реакции . Скорость химических реакций, как правило, при превышении температуры возрастает. Рассмотрим это на примере взаимодействия водорода с кислородом.

2Н 2 + О 2 = 2Н 2 О

При 20 0 С скорость реакции практически равна нулю и понадобилось бы 54 млрд.лет, чтобы взаимодействие прошло на 15%. При 500 0 С для образования воды потребуется 50 минут, а при 700 0 С реакция протекает мгновенно.

Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа : при увеличении температуры на 10 о скорость реакции увеличивается в 2 – 4 раза. Правило Вант-Гоффа записывается:


4) Влияние катализаторов . Скорость химических реакций можно регулировать с помощью катализаторов – веществ, изменяющих скорость реакции и остающихся после реакции в неизменном количестве. Изменение скорости реакции в присутствии катализатора называется катализом. Различают положительный (скорость реакции увеличивается) и отрицательный (скорость реакции уменьшается) катализ. Иногда катализатор образуется в ходе реакции, такие процессы называют автокаталитическими. Различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор и реагирующие вещества находятся в одной фазе. Например:

При гетерогенном катализе катализатор и реагирующие вещества находятся в разных фазах. Например:

Гетерогенный катализ связан с ферментативными процессами. Все химические процессы, протекающие в живых организмах, катализируются ферментами, которые представляют собой белки с определёнными специализированными функциями. В растворах, в которых идут ферментативные процессы, нет типичной гетерогенной среды, в связи с отсутствием чётко выраженной поверхности раздела фаз. Такие процессы относят к микрогетерогенному катализу.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Химические реакции протекают с различными скоростями: с малой скоростью - при образовании сталактитов и сталагмитов, со средней скоростью - при варке пищи, мгновенно - при взрыве. Очень быстро проходят реакции в водных растворах.

Определение скорости хи­мической реакции, а также выяснение ее зависимости от условий проведения про­цесса - задача химической кинетики - науки о законо­мерностях протекания хими­ческих реакций во времени.

Если химические реакции происходят в однородной сре­де, например в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реак­ции называют гомогенными .

(v гомог) определя­ется как изменением количества вещества в еди­ницу времени в единице объема:

где Δn - изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); Δt - интервал времени (с, мин); V - объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентра­цию С, то

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

если объем системы не меняется.

Если реакция идет между веществами, находя­щимися в разных агрегатных состояниях (напри­мер, между твердым веществом и газом или жид­костью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она прохо­дит только на поверхности соприкосновения ве­ществ. Такие реакции называют гетерогенными .

Определяется как изменение количества вещества в единицу вре­мени на единице поверхности.

где S - площадь поверхности соприкосновения ве­ществ (м 2 , см 2).

Изменение количества ве­щества, по которому опреде­ляют скорость реакции, - это внешний фактор, наблюда­емый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не раз­лететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли «старые связи» и смогли образоваться «новые», а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферно давлении исчисляются миллиардами за 1 секунду, то есть все реакции должны были бы идти мгновен­но. Но это не так. Оказывается, что лишь очень не­большая доля молекул обладает необходимой энер­гией, приводящей к эффективному соударению.

Минимальный избыток энергии, который долж­на иметь частица (или пара частиц), чтобы произо­шло эффективное соударение, называют энергией активации E a .

Таким образом, на пути всех частиц, вступаю­щих в реакцию, имеется энергетический барьер, равный энергии активации E a . Когда он малень­кий, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В против­ном случае требуется «толчок». Когда вы подноси­те спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию E a , необходимую для эф­фективного соударения молекул спирта с молеку­лами кислорода (преодоление барьера).

Скорость химической реакции зависит от мно­гих факторов. Основными из них являются: при­рода и концентрация реагирующих веществ, дав­ление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирую­щих веществ в случае гетерогенных реакций .

Температура

При повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. X. Вант- Гофф сформулировал правило:

Повышение темпе­ратуры на каждые 10 °С приводит к увеличению скорости реакции в 2-4 раза (эту величину назы­вают температурным коэффициентом реакции).

При повышении темпе­ратуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко по­вышается доля «активных» молекул, участвующих в эф­фективных соударениях, пре­одолевающих энергетичес­кий барьер реакции. Математически эта зависимость выражается со­отношением:

где v t 1 и v t 2 - скорости реакции соответственно при конечной t 2 и начальной t 1 температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые 10 °С.

Однако для увеличения скорости реакции повы­шение температуры не всегда применимо, т. к. ис­ходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества и т. д.

Эндотермические и экзотермические реакции

Реакция метана с кислородом воздуха, как известно, сопровождается выделением большого количества тепла. Поэтому ее используют в быту для приготовления пищи, нагревания воды и отопления. Природный газ, поступающий в дома по трубам, на 98% состоит именно из метана. Реакция оксида кальция (СаО) с водой тоже сопровождается выделением большого количества тепла.

О чем могут говорить эти факты? При образовании новых химических связей в продуктах реакции выделяется больше энергии, чем требуется на разрыв химических связей в реагентах. Избыток энергии выделяется в виде тепла, а иногда и света.

СН 4 + 2О 2 = СО 2 + 2Н 2 О + Q (энергия (свет, тепло));

СаО + Н 2 О = Са(ОН) 2 + Q (энергия (тепло)).

Такие реакции должны протекать легко (как легко катится под гору камень).

Реакции, в которых энергия выделяется, называются ЭКЗОТЕРМИЧЕСКИМИ (от латинского «экзо» – наружу).

Например, многие окислительно-восстановительные реакции являются экзотермическими. Одна из таких красивых реакций — внутримолекулярное окисление-восстановление, протекающее внутри одной и той же соли — дихромата аммония (NH 4) 2 Cr 2 O 7:

(NH 4) 2 Cr 2 O 7 = N 2 + Cr 2 O 3 + 4 H 2 O + Q (энергия).

Другое дело – обратные реакции. Они аналогичны закатыванию камня в гору. Получить метан из CO 2 и воды до сих пор не удается, а для получения негашеной извести СаО из гидроксида кальция Са(ОН) 2 требуются сильное нагревание. Такая реакция идет только при постоянном притоке энергии извне:

Са(ОН) 2 = СаО + Н 2 О — Q (энергия (тепло))

Это говорит о том, что разрыв химических связей в Ca(OH) 2 требует большей энергии, чем может выделиться при образовании новых химических связей в молекулах CaO и H 2 O.

Реакции, в которых энергия поглощается, называются ЭНДОТЕРМИЧЕСКИМИ (от «эндо» – внутрь).

Концентрация реагирующих веществ

Изменение давления при участии в реакции га­зообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодей­ствие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирую­щих веществ, тем больше столкновений и, соответ­ственно, выше скорость реакции. Например, в чи­стом кислороде ацетилен сгорает очень быстро. При этом развивается температу­ра, достаточная для плавле­ния металла. На основе боль­шого экспериментального материала в 1867 г. норвеж­цами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональ­на произведению концентраций реагирующих ве­ществ, взятых в степенях, равных их коэффици­ентам в уравнении реакции.

Этот закон называют также законом действую­щих масс.

Для реакции А + В = D этот закон выразится так:

Для реакции 2А + В = D этот закон выразится так:

Здесь С А, С В - концентрации веществ А и В (моль/л); k 1 и k 2 - коэффициенты пропорцио­нальности, называемые константами скорости ре­акции.

Физический смысл константы скорости реак­ции нетрудно установить - она численно равна скорости реакции, в которой концентрации реаги­рующих веществ равны 1 моль/л или их произ­ведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от тем­пературы и не зависит от концентрации веществ.

Закон действующих масс не учитывает кон­центрации реагирующих веществ, находящихся в твердом состоянии , т. к. они реагируют на по­верхности и их концентрации обычно являются постоянными.

Например, для реакции горения угля выражение скорости реакции должно быть запи­сано так:

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции мо­жет сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют меха­низм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией актива­ции. Их называют катализаторами (от лат. katalysis - разрушение).

Катализатор действует как опытный провод­ник, направляющий группу туристов не через вы­сокий перевал в горах (его преодоление требует много сил и времени и не всем до­ступно), а по известным ему обходным тропам, по кото­рым можно преодолеть гору значительно легче и быстрее.

Правда, по обходному пу­ти можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, ко­торые называют селективны­ми. Ясно, что нет необходи­мости сжигать аммиак и азот, зато оксид азота (II) находит использование в производстве азотной кислоты.

Катализаторы - это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остаю­щиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называ­ют катализом. Катализаторы широко использу­ют в различных отраслях промышленности и на транспорте (каталитические преобразователи, пре­вращающие оксиды азота выхлопных газов авто­мобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализа­тор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализа­тор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида мар­ганца (IV):

Сам катализатор не рас­ходуется в результате реак­ции, но если на его поверх­ности адсорбируются другие вещества (их называют каталитическими ядами), то поверхность становится не­работоспособной, требуется регенерация катализатора. Поэтому перед проведени­ем каталитической реакции тщательно очищают исход­ные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катали­затор - оксид ванадия (V) V 2 O 5:

При производстве метанола используют твер­дый «цинкохромовый» катализатор (8ZnO Cr 2 O 3 х CrO 3):

Очень эффективно работают биологические ка­тализаторы - ферменты. По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью про­текают сложные химические реакции.

Известны другие интересные вещества - ин­гибиторы (от лат. inhibere - задерживать). Они с высокой скоростью реагируют с активными ча­стицами с образованием малоактивных соедине­ний. В результате реакция резко замедляется и за­тем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизи­руют растворы пероксида водорода.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем факто­ром, посредством которого сказывается влияние при­роды реагирующих веществ на скорость реакции.

Если энергия активации мала (< 40 кДж/моль), то это означает, что значительная часть столкнове­ний между частицами реагирующих веществ при­водит к их взаимодействию, и скорость такой ре­акции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих ре­акциях участвуют разноименно заряженные ионы, и энергия активации в данных случаях ничтожно мала.

Если энергия активации велика (> 120 кДж/моль), то это означает, что лишь ничтожная часть стол­кновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заме­тить практически невозможно.

Если энергии активации химических ре­акций имеют промежуточные значения (40­120 кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаи­модействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимо­действие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, иду­щих на поверхности веществ, т. е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растер­тый в порошок мел гораздо быстрее растворяется в соля­ной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется в первую очередь увеличением поверхности со­прикосновения исходных веществ , а также рядом других причин, например, нарушением структуры «правильной» кристаллической решетки. Это при­водит к тому, что частицы на поверхности обра­зующихся микрокристаллов значительно реакци­онноспособнее, чем те же частицы на «гладкой» поверхности.

В промышленности для проведения гетероген­ных реакций используют «кипящий слой», чтобы увеличить поверхность соприкосновения реагиру­ющих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью «кипящего слоя» проводят об­жиг колчедана.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Химическая реакция - это превращение одних веществ в другие.

К какому бы типу ни относились химические реакции, они осуществляются с различной скоростью. Например, геохимические превращения в недрах Земли (образование кристаллогидратов, гидролиз солей, синтез или разложение минералов) протекают тысячи, миллионы лет. А такие реакции, как горение пороха, водорода, селитр, бертолетовой соли происходят в течение долей секунд.

Под скоростью химической реакции понимается изменение количеств реагирующих веществ (или продуктов реакции) в единицу времени. Чаще всего используется понятие средней скорости реакции (Δc p) в интервале времени.

v ср = ± ∆C/∆t

Для продуктов ∆С > 0, для исходных веществ -∆С < 0. Наиболее употребляемая единица измерения - моль на литр в секунду (моль/л*с).

Скорость каждой химической реакции зависит от многих факторов: от природы реагирующих веществ, концентрации реагирующих веществ, изменении температуры реакции, степени измельчённости реагирующих веществ, изменении давления, введения в среду реакци катализатора.

Природа реагирующих веществ существенно влияет на скорость химической реакции. В качестве примера рассмотрим взаимодействие некоторых металлов с постоянным компонентом - водой. Определим металлы: Na, Са, Аl ,Аu . Натрий реагирует с водой при обычной температуре очень бурно, с выделением большого количества теплоты.

2Na + 2H 2 O = 2NaOH + H 2 + Q;

Менее энергично при обычной температуре реагирует с водой кальций:

Са + 2Н 2 О = Са(ОН) 2 + H 2 + Q;

Алюминий реагирует с водой уже при повышенной температуре:

2Аl + 6Н 2 О = 2Аl(ОН)з + ЗН 2 - Q;

А золото - один из неактивных металлов, с водой ни при обычной, ни при повышенной температуре не реагирует.

Скорость химической реакции находится в прямой зависимости от концентрации реагирующих веществ . Так, для реакции:

C 2 H 4 + 3O 2 = 2CO 2 + 2Н 2 О;

Выражение скорости реакции имеет вид:

v = k**[О 2 ] 3 ;

Где k - константа скорости химической реакции, численно равная скорости данной реакции при условии, что концентрации реагирующих компонентов равны 1 г/моль; величины [С 2 Н 4 ] и [О 2 ] 3 соответствуют концентрациям реагирующих веществ, возведенные в степень их стехиометрических коэффициентов. Чем больше концентрация [С 2 Н 4 ] или [О 2 ], тем больше в единицу времени соударений молекул данных веществ, следовательно больше скорость химической реакции.

Скорости химических реакций, как правило, находятся также в прямой зависимости от температуры реакции . Естественно, при увеличении температуры кинетическая энергия молекул возрастает, что так же приводит к большим столкновением молекул в единицу времени. Многочисленные опыты показали, что при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза (правило Вант-Гоффа):

где V T 2 - скорость химической реакции при Т 2 ; V ti - скорость химической реакции при T 1 ; g- температурный коэффициент скорости реакции.

Влияние степени измельчённости веществ на скорость реакции так же находится в прямой зависимости. Чем в более мелком состоянии находятся частицы реагирующих веществ, тем в большей степени они соприкасаются друг с другом в единицу времени тем больше скорость химической реакции. Поэтому, как правило, реакции между газообразными веществами или растворами протекают быстрее, чем в твердом состоянии.

Изменение давления оказывает влияние на скорость реакции между веществами, находящимися в газообразном состоянии. Находясь в замкнутом объеме при постоянной температуре реакция протекает со скоростью V 1. Если в данной системе мы повысим давление (следовательно, уменьшим объем), концентрации реагирующих веществ возрастут, увеличится соударение их молекул в единицу времени, скорость реакции повысится до V 2 (v 2 > v 1).

Катализаторы - это вещества, изменяющие скорость химической реакции, но остающиеся неизменными после того, как химическая реакция заканчивается. Влияние катализаторов на скорость реакции называется катализом, Катализаторы могут как ускорять химико-динамический процесс, так и замедлять его. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, то говорят о гомогенном катализе, а при гетерогенном катализе реагирующие вещества и катализатор находятся в разных агрегатных состояниях. Катализатор с реагентами образует промежуточный комплекс. Например, для реакции:

Катализатор (К) образует комплекс с А или В - АК, ВК, который высвобождает К при взаимодействии со свободной частицей А или В:

АК + В = АВ + К

ВК + А = ВА + К;

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.