План-конспект урока по физике. Тема урока: Колебательное движение

1. Гармоническое колебание

Колебательное движение – это повторяющиеся с течением времени движение, при котором, точка выйдя из положения равновесия перемещается в пространстве в некотором ограниченном интервале.

Колебания называются свободными , если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колеблющуюся точку.

Если при колебательном движении существует некоторое время, через которое место положения точки в пространстве повторяется, то такое колебание называется периодическим.

В природе и технике широко распространены периодические процес­сы. Вращение Земли вокруг своей оси и вокруг Солнца, работа сердца, ка­чание маятника, волны на воде, переменный электрический ток, свет, звук и т. д. являются примерами периодических процессов.

Из периодических движений наиболее простейшими являются гармонические колебания – колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса. Любое сложное колебание можно разложить в ряд гармонических колебаний.

Гармонические колебания – это периодические колебания с периодом .

Х – смещение точки от положения равновесия, определяется синусом или косинусом.

А – амплитуда колебаний, максимальное отклонение от положения равновесия, которое достигается при колебательном движении.

– фаза колебаний. Фаза характеризует ту долю от амплитуды, которую будет иметь смещение в данный момент времени.

– начальная фаза характеризует ту долю от амплитуды, которую будет иметь смещение в начальный момент времени.

Рассмотрим под действием каких сил совершаются колебания. Для этого необходимо знать m и х . Анализируя колебания грузика, мы видим, что грузик останавливается в крайних положениях, а затем движется в противопо­ложном направлении, т. е. грузик имеет переменные скорость и ускорение.

Скорость

Ускорение

Из второго закона Ньютона:

Под действием силы

груз совершает гармонические колебания.

m и ω –постоянные,

Гармонические колебания совершаются под действием упругих или квазиупругих сил.

Роль квазиупругой силы может выполнять результирующая сил:

или

Уравнение (7) называется дифференциальным уравнением гармонического колебания.

2. Физический и математический маятник.

Рассмотрим физический маятник с углом отклонения φ. Физический маятник – это тело, имеющее ось вращения.

Для физического маятника необходимо использовать основное уравнение динамики

Если обозначить расстояние от центра вращения до точки приложения силы – а , плечо – р, то момент силы можно представить:



Знак минус показывает, что момент силы ведет к уменьшению угла поворота φ.

Так как угловая скорость

Если угол φ мал, то

(**)

Сравним (*) и (**)

Период колебаний физического маятника

Период колебаний физического маятника зависит от распределения массы относительно оси вращения для малых углов отклонения .

Существует математический маятник – маятник, который имеет длину подвеса во много раз больше размеров самого маятника. Пусть а – длина математического маятника, тогда момент инерции математического маятника:

Период математического маятника:

Движение математического маятника при больших углах отклонения будет периодическим, но не гармоническим (период колебаний будет зависеть от размаха). Гармоническими будут колебания при малых углах отклонения.

Приведенной длиной а пр физического маятника называется такая длина математического маятника, при которой период физического маятника равен периоду математического маятника. Т физ = Т мат

Точка, удаленная от центра вращения на величину называется центром качения. Ось качения и центр качения взаимообратимы.

3. Свободные электромагнитные колебания в колебательном контуре

В цепи, содержащей индуктивность и емкость, могут возникнуть электрические колебания, при которых электрические величины (заряды, токи, напряжения) периодически изменяются и которые сопровождаются взаимными превращениями энергии электрического и магнитного полей. Рассмотрим цепь, состоящую из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R (рис. 1). Такая цепь называется колебательным контуром. Колебания в контуре можно вызвать, сообщив обкладкам конденсатора некоторый начальный заряд ±q. Тогда в начальный момент времени при t = 0 между обкладками конденсатора возникает электрическое поле, энергия которого . Так как конденсатор замкнут на катушку индуктивности, то он начнет разряжаться, и в цепи потечет электрический ток I. В результате этого заряд на обкладках конденсатора (а значит, и энергия электрического поля) будет уменьшаться, а энергия магнитного поля катушки, которая равна , будет возрастать.

Урок по физике для 11 класс по теме « Гармонические колебания. Амплитуда, период, частота. Фаза колебаний»

Цель урока: познакомить учащихся с понятие гармонических колебаний, с условиями, при выполнении которых колебания считаются гармоническими, их характеристиками, доказать, что колебания математического и пружинного маятников являются гармоническими, вывести формулу периодов этих маятников, показать невозможность изучения физики без знания математики, показать, что дифференциальное исчисление и понятие производной – являются мощнейшими инструментами изучения и исследования физических процессов и явлений.

Тип урока: урок усвоения новых знаний .

Продолжительность урока: один академический час.

Оборудование: математический и пружинный маятники, длинная бумажная лента шириною 25 см, капельница с цветными чернилами, мультимедийный проектор с доской и ПК с инсталлированными пакетом Microsoft Office и УП GRAN1.

Структура урока и ориентировочное время

Ориентировочные

затраты времени

І. Организационный момент

1 мин

ІІ.

7 мин

3.1 Мотивация учебной деятельности учащихся (сообщения темы, цели, задач урока и мотивация учебной деятельности школьников)

3.2 Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения

3.4 Решение задач

30 мин

(5 мин +

15 мин

2 мин

8 мин)

IV .Подведение итогов урока

( сообщение домашнего задания и рефлексия )

7 мин

Эпиграф для урока : «Наука едина и нераздельна»
Владимир Иванович Вернадский (1863-1945), академик Российской академии наук , , один из основателей и первый президент .

Ход урока

І. Организационный момент

ІІ. Проверка домашнего задания, воспроизведение и коррекция опорных знаний учащихся ( фронтальный опр ос ).

1. В каких единицах измеряются величины углов в СИ? (СИ

2. Что называется 1 радианом? (φ= = = рад=360 0 1 рад =

57,3 0)

3. Что называется угловой скоростью и каковы единицы ее измерения в СИ?

ω= ==2 πυ ; (СИ)

4. Как изменяются координаты точки при ее движении по окружности? (х=R =х max = х max ; y =R = y max y max )

5. Что называется производной функции f(x)? Какова формула производной?

( x )=

6. Чему равна производная ((=)

((=)

х n (() ׳ = n )

nx ( ( nx ) ׳ = n )

7. В чем заключается физический (механический) смысл производной?

а) равномерное движение: х=х ) + vt ( x ׳ ( t )=( х 0 + vt ) ׳ = v .

б) равноускоренное движение: x 0 + v 0 t + ( x ׳ ( t )= 0 + v 0 t +) ׳ = v 0 + at = v .

Вывод№1 : І-я производная координаты тела по времени равна скорости движения тела.

в) ׳׳ ( t )= 0 + v 0 t +) ׳׳ =( v 0 + at ) ׳

Вывод№2 : І І -я производная координаты тела по времени равна ускорению тела. При равномерном движении х ׳׳ ( t )= 0 + v 0 t ) ׳ =а=0 ускорение отсутствует.

ІІІ. Изучение нового материала

3.1 Мотивация учебной деятельности учащихся (сообщения темы, цели, задач урока и мотивация учебной деятельности школьников - определить вместе с учащимися, обратить внимание на смысл эпиграфа, на то, что материал урока как объект изучения будет рассмотрен не только с физической, но и с математической (алгебраической) точки зрения, где математика выступает в роли инструмента).

3.2. Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения .

3.2.1. Что называется колебанием? (периодически повторяющееся движение)

3.2.2. Чем характеризуются колебания (каковы характеристики колебаний)? (координатой, амплитудой, скоростью, периодом, частотой)

3.2.3 Следовательно, какими функциями с т. зрения математики должны описываться колебания - линейными, нелинейными (степенными, логарифмическими, тригонометрическими (периодическими))? – по логике, раз колебание –это то, что периодически повторяется, следовательно, периодическими.

3.2.4. Из вышеперечисленных функций, – какие относятся к периодическим? (тригонометрические )

3.2.5. Какие Вам известны периодические тригонометрические функции? ()

3.2.6. Как Вы думаете, во время колебаний маятника как изменяется его координата, скорость и ускорение – непрерывно или скачкообразно (дискретно)? (Координата, скорость и ускорение изменяются непрерывно )

3.2.7. А раз непрерывно, то какими из 4-х тригонометрических функций () должны описываться величины, характеризующие любой колебательный процесс? (Только т.к. они непрерывны, а имеют разрыв - продемонстрировать графики ).

3.2.8. Определение гармонических колебаний.

Величина Х (физическая величина) считается гармонически колеблющейся (изменяющейся), если 2-я производная от этой величины пропорциональна самой этой величине х, взятой с обратным знаком:

(*) х - диф. уравн. 2-го порядка (условие гармоничности х )

3.2.9. Докажем, что только уравнения типа: х=х max sin ω t и х=х max соs ω t

удовлетворяют уравнению (*): =(sin ω t ) = ω x max соs ω t .

=( ω x max соs ω t ) = - ω 2 x max sin ω t = - ω 2 x .

=( cos ω t) =- ω x max sins ω t.

=(- ω x max sin ω t) = - ω 2 x max cod ω t= - ω 2 x. С ледовательно :

Вывод: уравнения типа х= х=х max sin ω t sin ω t и х=х max соs ω t являются гармоническими.

3.2.10. Характеристики гармонических уравнений

х=х max sin ω t

х=х max соs ω t , х max амплитуда колебания, ω t – фаза колебаний,

ω – циклическая частота колебаний.

СИ -рад, СИ -рад/с, СИ - м (если речь о механических колеб)

Определение 1 : Амплитудой гармонических колебаний х max называется наибольшее значение колеблющейся величины, которое стоит перед знаком sin или соs в уравнении гармонических уравнений.

Определение 2 : Периодом гармонических колебаний Т называется время одного колебания

Т = ; СИ - с

Определение 3 : Частотой гармонических колебаний υ называется количество колебаний в единицу времени.

υ = ; СИ - с -1 ; Гц.

Определение 4 : Фазой гармонических колебаний φ называется физическая величина, стоящая под знаком sin или соs в уравнении гармонических уравнений и которая при заданной амплитуде однозначно определяет значение колеблющейся величины.

φ = ω t ; СИ -рад.

3.2.11. Докажем, что колебания маятников гармонические:

а) пружинный: F упр = -kx = ma; a = - x ; Т.к. a = x , то имеем :

x = - x пружинный ω 2 = ω = = ; откуда Т = 2 π - формула периода колебаний пружинного маятника.

б) математический (груз, подвешенный на невесомой и нерастяжимой нити, размерами которого по сравнению с ее длиной можно пренебречь)

F равнод = -mgsin φ = ma ; - gsin φ = a = x ; Т.к. sin φ = - g = x = - ω 2 x ; математический маятник колеблется гармонически. Т.к. ω 2 = ω = = ; откуда Т = 2 π - формула периода колебаний математического маятника.

3.2.12. Опыт с маятником-чернильницей (песочницей).

Вывод: Опыт подтверждает, что маятник колеблется гармонически (т.к. след имеет форму синусоиды).

3.3 Подведение краткого итога изучения теоретического материала.

3.4 Решение задач

3.4.1 Экспериментальное задание: экспериментально найти период колебаний пружинного маятника, его х max , записать уравнение его колебаний и найти v max и a max .(пружина с жескостью 40 Н/м, груз 400г)

Т 0,67 с υ == 1,5 Гц х =0,05cos2 π 1,5 t = 0,05 cos 3 π t .

V= (t)= - 0,15 π sin3 π t ; a=(t)=-0,45 π 2 cos3 π t

3.4.2 Задачи № 4.1.5 и 4.1.6 (Сборник задач по физике, О.И.Громцева,

Экзамен, Москва, 2015),стр.67

3.4.3 Задачи № 4.2.1 и 4.3.1. – для слабых учеников;

4.3.12 и № 12.3.2 – для средних и сильныхучеников.

IV .Подведение итогов урока (сообщение домашнего задания и рефлексия).

4.1 Д.з. § 13,14,15, стр. 65 (задачи ЕГЭ № А1, А3), стр. 68 (задачи для самостоятельного решения – две задачи на выбор ученика).

4.2 Рефлексия

.

Учитель физики :

При решении любой проблемы мы можем идти двумя путями: индуктивным и дедуктивным. Индуктивный путь предполагает возможность обобщения при анализе решения частных задач, дедуктивным методом мы сможем идти от общих принципов к частным.

Какой метод предпочтительнее в нашем случае?

Обсудите вопрос в парах и выскажите свой мнение.

Итак, по результатам обсуждения можно сделать вывод, что в данном случае нам необходимо использовать индуктивный метод; мы должны получить общие для любого колебания приемы, позволяющие описать состояние колебательной системы в произвольный момент времени.

Поэтому начнем обсуждение с частной задачи.

Задача 1.

Заряд на обкладках конденсатора меняется по закону:

πt+

В какие моменты времени в течение периода сила тока в контуре составляет от максимального значения? Чему в эти моменты времени равно напряжение? Какую долю от максимального оно в эти моменты времени составляет? Емкость конденсатора в контуре равна 2 мкФ.

Предложите схему решения задачи, попытайтесь найти разные подходы к решению. (Работа ведется в парах)

Итак, давайте соберем воедино результаты вашего обсуждения. (На доске собираются идеи, предложенные различными парами, обсуждаются и в результате формируется два подхода к решению задачи: аналитический и графический).

Какие действия необходимы для реализации аналитического решения?

Учитель математики:

Изучая физические закономерности, связывающие изменения заряда и силы тока в контуре, вы пришли к выводу, что

( t )= i ( t ) , поэтому, необходимо вспомнить, как найти производную тригонометрической функции.
-Давайте вспомним формулы производных тригонометрических функций, производной сложной функций.
-Найдите производные следующих функций (Слайд №6)

Учитель физики:

Итак, математические закономерности поиска производной сложной тригонометрической функции применим к решению нашей задачи.

Запишите уравнение изменения силы тока самостоятельно.

Представьте полученные результаты для общего обсуждения.

Итак, уравнение изменения силы тока выглядит следующим образом:

i(t)= - 0,03πsin(πt+3π).

Используя то, что сила тока в искомый момент времени составляет от максимального значения, равного 0,03π, составим уравнение

0,03πsin(πt+3π).

Учитель математики:

Уравнение данного типа является тригонометрическим.

Какие виды тригонометрических уравнений вы знаете, каковы способы их решения?
-Решите предложенные уравнения самостоятельно
(Слайд № 8)

Можно ли аналогично решить уравнение из задачи?

Учитель физики:

- Решим наше тригонометрическое уравнение, найдем искомые моменты времени. (К доске вызывается ученик).

Для поиска напряжения на конденсаторе в данный момент времени необходимо получить уравнение зависимости u ( t ). Зная связь заряда конденсатора и напряжения, получите уравнение и найдите искомое значение напряжения. (Задания выполняются самостоятельно на листе Приложения).

Составим алгоритм решения, опираясь на возможности математического анализа.

1.Запишем уравнения

изменения силы тока от времени, используя математическую связь между изменением заряда и силы тока.

2.Зная, что сила тока в искомый момент времени составляет 1/6 от максимального значения, составим и решим тригонометрическое уравнение и найдем соответствующие моменты времени.

3.Запишем уравнение изменения напряжения и вычислим его в ранее найденные моменты времени.

Подобная схема решения может использоваться для анализа любого колебательного процесса.

В качестве домашнего задания вам предлагается задача 2:

Точка совершает гармонические колебания с периодом в 2 секунды, амплитудой 50 мм, начальная фаза равна нулю. Найти скорость и ускорение точки в момент времени, когда смещение точки от положения равновесия равно 25 мм.

Перейдем ко второму способу решения исходной задачи - графическому.

Учитель математики:

Что нужно знать, чтобы построить график данной функции?

График какой функции является исходным ?

Какие преобразования графика нужно совершить, чтобы построить график функции

I (t)= - 0,03πsin(πt+3π)?

Как построить графики функций, изображенные на слайде № 10?

Учитель физики:

Воспользуемся графиком функции, отражающим изменения заряда и силы тока со временем(Слай №12. Какую информацию по условию задачи подскажут графики? Ответьте на вопрос задачи самостоятельно, используя лист Приложения.

Совпадают ли полученные ответы?

Какой из методов предпочтительнее и почему?

Нет ли еще одного варианта решения? Подумайте над этим вопросом дома.

Индуктивный метод часто используют, когда необходимо проанализировать и сравнить данные эксперимента или наблюдения. На одном из предыдущих уроков мы проводили лабораторную работу по исследованию зависимости периода колебаний математического маятника от его длины. В качестве дополнительного задания вы строили график зависимости координаты колеблющегося маятника от времени x ( t )=0,1 cost . Давайте воспользуемся этим графиком для ответа на следующие вопросы:

За какую часть периода тело, совершающее гармонические колебания, пройдет путь:

от среднего положения до крайнего

первую половину пути

вторую половину пути

Можно ли оценить эти промежутки времени экспериментально?

В какой промежуток времени скорость тела меньше максимальной скорости в 2 раза?

Какими математическими методами нужно воспользоваться для ответов на поставленные вопросы?

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ КЕМЕРОВСКОЙ ОБЛАСТИ государственное бюджетное образовательное учреждение среднего профессионального образования "БЕЛОВСКИЙ ТЕХНИКУМ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА" Решетняк Наталья Александровна, преподаватель ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ МЕТОДИЧЕСКАЯ РАЗРАБОТКА ОТКРЫТОГО УРОКА ФИЗИКИ Белово 2013 Пояснительная записка Методическая разработка предназначена для проведения урока физики по теме "Гармонические колебания" в группах обучающихся ОУ СПО профессиям 150709.02 Сварщик (электросварочные и газосварочные работы), 230103.02 Мастер по обработке цифровой информации, 140446.03 Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям). План урока Тема: Механические колебания Тема урока: Гармонические колебания Тип урока: изучение нового материала Цели урока: * Овладение обучающимися необходимыми знаниями по теме урока * Формирование у обучающихся практического опыта применять полученные теоретические знания на практике * Формирование у обучающихся умения планировать свою деятельность * Формирование у обучающихся практического опыта ставить физический эксперимент * Формирование у обучающихся самостоятельно делать выводы на основе проведенных экспериментов * Формирование у обучающихся умения отстаивать свою точку зрения * Формирование умения организовать работу в группе, распределять роли в команде * Формирование у обучающихся умения оценивать свою работу и работу других обучающихся КМО урока: план урока, список обучающихся, доска, мел, вопросы для фронтального опроса, карточки с заданиями по теме "Свободные и вынужденные колебания", карточки с заданиями для экспериментальных задач, листочки, штативы с муфтами, груз на пружине, металлический шарик на подвесе, рулетка, емкость с водой, нитки, скотч, ножницы, магнит., рабочие тетради, учебники (Мякишев, Г.Я., Физика. 11 класс [Текст] : учеб. для общеобразоват. учреждений: базовый и профил. Уровни / Г.Я.Мякишев, Б.Б.Буховцев, В.М. Чаругин; под ред. Н.А.Парфентьевой. - 21-е изд. - М. : Просвещение, 2012. - 399 с., ил.) канцелярские принадлежности (ручки, карандаши, линейки), калькуляторы, секундомеры (в сотовых телефонах). Продолжительность урока: 45 минут Место проведения: кабинет № 13 Уровень слушателей: 2 курс. Преподаватель: Решетняк Н.А. Технологическая карта урока ВремяСодержательная часть урокаДеятельность преподавателяДеятельность обучающихсяДидактическое обеспечение3 минОрганизационная часть 1. Приветствие 2. Перекличка 3. Целеполагание Приветствие Перекличка Приветствие Перекличка Список обучающихся37 минОсновная часть8 минАктуализация опорных знаний 1. Фронтальный опрос 2. Работа по карточкам Опрос Ответы с места Работа в тетради Приложение А Приложение Б8 минИзучение нового материала 1. Свободные колебания совершаются по закону синуса или косинуса 2. Определение гармонических колебаний 3. Амплитуда гармонических колебаний 4. Частота гармонических колебаний 5. Небольшое историческое отступление Рассказ, диалог, демонстрация Слушание, участие в диалоге, запись в тетради основных определений и формулПриложение В21мин, в т.ч.: 4 мин 5 мин 4 мин 8 минЗакрепление изученного материала Решение эксперименталь-ных задач 1. Инструктаж, раздача карточек с заданиями 2. Проведение экспериментов 3. Оформление результатов в тетради 4. Защита работ Инструктаж Консультация в случае необходимости Слушание, оценивание Работа в микрогруппах Защита работ, взаимооценка Приложение Г5 минЗаключительная часть Рефлексия. Домашнее задание Заключительная форма вежливости Оценка занятия Оценка занятияВопросы для рефлексии - Приложение Д Список литературы и источников 1. Мякишев, Г.Я., Физика. 11 класс [Текст] : учеб. для общеобразоват. учреждений с прил. на электрон. носителе: базовый и профил. уровни / Г.Я.Мякишев, Б.Б.Буховцев, В.М. Чаругин; под ред. Н.А.Парфентьевой. - 21-е изд. - М. : Просвещение, 2012. - 399 с., л. ил. - (Классический курс). 2. Волков, В.А. Универсальные поурочные разработки по физике [Текст] : 11 класс. / В.А. Волков. - М. : ВАКО, 2011. - 464 с. - (В помощь школьному учителю). 3. Кабардин, О.Ф. Физика [Текст] : Справ. материалы. Учеб. пособие для учащихся. / О.Ф. Кабардин. - М. : Просвещение, 1985. - 359 с., ил. 4. Ландау, Л.Д. Физика для всех [Текст] : / Л.Д. Ландау, А.И. Китайгородский. - 3-е изд., стер. - М. : Наука, 1974. - 392 с., ил. 5. Физика. 11 кл. Базовый уровень [Текст] : / рабочая тетрадь к учебнику. - М. : ВАП, 1994. - 286 с., ил. 6. Григорьев, В.И. Силы в природе [Текст] : / В.И. Григорьев, Г.Я. Мякишев. - 5-е изд., перераб. - М. : Наука, 1977. - 416 с., ил. 7. Мощанский, В.Н. История физики в средней школе [Текст] : / В.Н Мощанский, Е.В. Савелова. - М. : Просвещение, 1981. - 205 с., ил. 8. Енохович, А.С. Справочник по физике [Текст] : / А.С. Енохович. - 2-е изд., перераб. и доп. - М. : Просвещение, 1990. - 384 с., ил. Приложение А Вопросы для фронтального опроса 1. Какие механические колебания называются свободными, вынужденными, затухающими? Привести примеры. 2. Что такое математический маятник? Перечислить характеристики математического маятника. 3. Как изменяются скорость и ускорение маятника в течение одного периода? Что в это время происходит с энергией маятника? Приложение Б Карточки с заданиями по теме "Свободные и вынужденные колебания" Какие из перечисленных колебаний являются свободными, а какие вынужденными? 1 вариант а) Колебания листьев на деревьях во время ветра. б) Биение сердца. в) Колебания груза на пружинке. г) Колебания струны музыкального инструмента после того, как её выведут из положения равновесия и предоставят самой себе. д) Колебания иглы в швейной машине. 2 вариант а) Колебания поршня в цилиндре. б) Колебания шарика, подвешенного на нити. в) Колебания голосовых связок во время пения. г) Колебания колосьев в поле на ветру. д) Колебания качелей. Приложение В Текст исторического отступления Галилей установил независимость периода колебаний маятника от амплитуды и массы, наблюдая во время богослужения в Пизанском соборе за тем, как раскачиваются на длинном подвесе лампады, причем время он измерял по биению собственного пульса. Приложение Г Решение экспериментальных задач по теме "Механические колебания" 1 вариант Изготовьте из подручных средств два маятника с грузами одного размера и с подвесами одинаковой длины, но один с большей массой, чем другой. Отклоните их на одинаковый угол от положения равновесия. Подсчитайте периоды их колебаний. Сравните полученные значения. Сделайте вывод. Одновременно ли прекратятся колебания? Объясните, почему. 2 вариант Изготовьте из подручных средств железный маятник. Подсчитайте период его колебаний. Изменится ли период, если под маятником установить магнит? Проверьте свое предположение экспериментально (магнит расположите на расстоянии 5-10 мм от маятника). Объясните результаты опыта. 3 вариант Изготовьте из подручных средств маятник. Подсчитайте период его колебаний. За какое время колебания затухнут? Опустите маятник в воду и снова измерьте период его колебаний и время затухания. Сравните полученные значения. Объясните результаты эксперимента. 4 вариант Изготовьте из подручных средств маятник. Подсчитайте период его колебаний. Как надо изменить длину маятника, чтобы период увеличился вдвое? Проверьте свое предположение экспериментально. Сделайте вывод о том, как зависит период колебаний маятника от его длины. 5 вариант Изготовьте из подручных средств маятник. Подсчитайте частоту его колебаний. Как надо изменить длину маятника, чтобы частота увеличилась вдвое? Проверьте свое предположение экспериментально. Сделайте вывод о том, как зависит период колебаний маятника от его длины. Приложение Д Вопросы для рефлексии - Что заинтересовало вас сегодня на уроке более всего? - Как вы усвоили пройденный материал? - Какие были трудности? Удалось ли их преодолеть? - Помог ли сегодняшний урок лучше разобраться в вопросах темы? - Пригодятся ли вам знания, полученные сегодня на уроке? 2

Тип урока: урок формирования новых знаний.

Цели урока:

  • формирование представлений о колебаниях, как о физических процессах;
  • выяснение условий возникновения колебаний;
  • формирование понятия о гармоническом колебании, характеристиках колебательного процесса;
  • формирование понятия резонанса, его применение и методы борьбы с ним;
  • формирование чувства взаимопомощи, умения работать в группах, парах;
  • развитие самостоятельности мышления

Оборудование: пружинный и математический маятники, проектор, компьютер, презентация преподавателя, диск «Библиотека наглядных пособий», листок усвоения знаний учащимися, карточки с обозначениями физических величин, текст «Явление резонанса».

На каждом столе лист усвоения знаний для каждого учащегося, текст о явлении резонанса.

Ход урока

I. Мотивация.

Учитель: Чтобы вы поняли, о чём сегодня пойдёт речь на уроке, прочтите отрывок из стихотворения «Утро» Н.А. Заболоцкого

Рождённый пустыней,
Колеблется звук,
Колеблется синий
На нитке паук.
Колеблется воздух,
Прозрачен и чист,
В сияющих звёздах
Колеблется лист.

Итак, сегодня мы будем говорить о колебаниях. Подумайте и назовите, где встречаются колебания в природе, в жизни, в технике.

Учащиеся называют разные примеры колебаний (слайд 2).

Учитель: Что же общего между всеми этимидвижениями?

Учащиеся: Эти движения повторяются (слайд 3).

Учитель: Такие движения называются колебаниями. Сегодня мы о них будем говорить. Запишите тему урока (слайд 4).

II. Актуализация знаний и изучение нового материала.

Учитель: Мы должны:

  1. Выяснить, что такое колебание?
  2. Условия возникновения колебаний.
  3. Виды колебаний.
  4. Гармонические колебания.
  5. Характеристики гармонического колебания.
  6. Резонанс.
  7. Решение задач (слайд 5).

Учитель: Посмотрите на колебания математического и пружинного маятников (демонстрируются колебания). Абсолютно ли точно повторяются колебания?

Учащиеся: Нет.

Учитель: Почему? Выясняется, что мешает сила трения. Так что же такое колебание? (слайд 6)

Учащиеся: Колебания – это движения, которые точно или приблизительно повторяются с течением времени (слайд 6, щелчок мышью). Определение записывается в тетрадь.

Учитель: Почему так долго продолжаются колебания? (слайд 7) На пружинном и математическом маятниках объясняется при помощи учащихся превращение энергии при колебаниях.

Учитель: Выясним условия возникновения колебаний. Что нужно, чтобы начались колебания?

Учащиеся: Нужно толкнуть тело, приложить к нему силу. Чтобы колебания длились долго, нужно уменьшить силу трения (слайд 8), условия записываются в тетрадь.

Учитель: Колебаний встречается очень много. Попробуем их классифицировать. Демонстрируются вынужденные колебания, на пружинном и математическом маятниках – свободные колебания (слайд 9). Учащиеся записывают в тетрадь виды колебаний.

Учитель: Если внешняя сила постоянная, то колебания называются автоматическими (щелчок мышью). Учащиеся в тетрадь записывают определения свободных (слайд 10), вынужденных (слайд 10, щелчок мышью), автоматических колебаний (слайд 10 щелчком мыши).

Учитель: Ещё колебания бывают затухающие и незатухающие (слайд 11 щелчком мыши). Затухающие колебания – это колебания, которые, под действием сил трения или сопротивления, со временем уменьшаются (слайд 12), показываются эти колебания на графике на слайде.

Незатухающие колебания – это колебания, которые со временем не изменяются; силы трения, сопротивления отсутствуют. Для поддержания незатухающих колебаний необходим источник энергии (слайд 13), показываются эти колебания на графике на слайде.

Даны примеры колебаний (слайд 14).

1 вариант выписывает примеры затухающих колебаний.

2 вариант выписывает примеры незатухающих колебаний.

  1. колебания листьев на деревьях во время ветра;
  2. биение сердца;
  3. колебания качелей;
  4. колебание груза на пружине;
  5. перестановка ног при ходьбе;
  6. колебание струны после того, как её выведут из положения равновесия;
  7. колебания поршня в цилиндре;
  8. колебание шарика на нити;
  9. колебание травы в поле на ветру;
  10. колебание голосовых связок;
  11. колебания щёток стеклоочистителя (дворники в машине);
  12. колебания метлы дворника;
  13. колебания иглы швейной машины;
  14. колебания корабля на волнах;
  15. размахивание руками при ходьбе;
  16. колебания мембраны телефона.

Учащиеся среди приведенных колебаний выписывают по вариантам примеры свободных и вынужденных колебаний, затем меняются информацией, работают в парах (слайд 15). Также выполняют задания по разделению на затухающие и незатухающие колебания в этих же примерах, затем меняются информацией, работают в парах.

Учитель: Вы видите, что все свободные колебания являются затухающими, а вынужденные колебания – незатухающими. Найдите среди приведённых примеров автоматические колебания. Учащиеся выставляют себе оценку в листок усвоения знаний в пункт 1 листка усвоения знаний (Приложение 1 )

Учитель: Среди всех видов колебаний выделяют особый вид колебаний – гармонические.

На пособии «Библиотека наглядных пособий» демонстрируется модель гармонических колебаний (механика, модель 4 гармонические колебания) (слайд 16).

График какой математической функции получается на модели?

Учащиеся: Это график функции синуса и косинуса (слайд 16 щелчком мыши).

Учащиеся записывают в тетрадь уравнения гармонических колебаний.

Учитель: Теперь нам нужно рассмотреть каждую величину в уравнении гармонического колебания. (На математическом и пружинном маятниках показывается смещение Х) (слайд 17). Х-смещение – отклонение тела от положения равновесия. Какая единица измерения смещения?

Учащиеся: Метр (слайд 17, щелчок мышью).

Учитель: На графике колебаний определите смещение в моменты времени 1 с, 2 с, 3 с, 4 с, 5 с, 6 с и т.д. (слайд 17, щелчок мышью). Следующая величина – Х мах. Что это?

Учащиеся: Максимальное смещение.

Учитель: Максимальное смещение называется амплитудой (слайд 18, щелчок мышью).

Учащиеся на графиках определяют амплитуду затухающих и незатухающих колебаний (слайд 18, щелчок мышью).

Учитель: Прежде чем рассматривать следующую величину, вспомним понятия величин, изученных на 1 курсе. Давайте посчитаем число колебаний на математическом маятнике. Можно ли определить время одного колебания?

Учащиеся: Да.

Учитель: Время одного полного колебания называется периодом – Т (слайд 19, щелчок мышью). Измеряется в секундах (слайд 19, щелчок мышью). Можно рассчитать период по формуле, если он очень мал (слайд 19, щелчок мышью). На графике разными цветами отмечены точки.

Учащиеся на графике определяют период, находя его между разными по цвету точками.

Учитель на математическом маятнике демонстрирует разную частоту при разной длине маятника. Частота ν – число полных колебаний за единицу времени (слайд 20).

Единица измерения – Гц (слайд 20 щелчок мышью). Между периодом и частотой существуют формулы связи. ν=1/Т Т=1/ν (слайд 20 щелчок мышью).

Учитель: Функция синуса и косинуса повторяется через 2π. Циклической (круговой) частотой ω (омега) колебаний называется число полных колебаний, которые совершаются за 2π единиц времени (слайд 21). Измеряется в рад/с (слайд 21, щелчок мышью) ω=2πν (слайд 21, щелчок мышью).

Учитель: Фаза колебания – (ωt+ φ 0) – это величина, стоящая под знаком синуса или косинуса. Измеряется в радианах (рад) (слайд 22).

Фаза колебания в начальный момент времени (t=0) называется начальной фазой – φ 0 . Измеряется в радианах (рад) (слайд 21, щелчок мышью).

Учитель: А теперь повторяем материал.

а)Учащимся показываются карточки с величинами, они называют эти величины. (Приложение 2 )

б) Учащимся показываются карточки с единицам измерения физических величин. Нужно назвать эти величины.

в) Каждой четвёрке учащихся даётся карточка с какой-либо величиной, нужно все о ней рассказать по плану на слайде 23. Затем группы меняются карточками с величинами и выполняют то же задание.

Учащиеся выставляют себе оценки в листок успеваемости (пункт 2 Приложение 1)

Учитель: Мы сегодня работали с пружинным и математическим маятниками, формулы периодов этих маятников рассчитываются по формулам. На математическом маятнике демонстрирует периоды колебаний при разной длине маятника.

Учащиеся выясняют, что период колебаний зависит от длины маятника (слайд 24)

Учитель на пружинном маятнике демонстрирует зависимость периода колебаний от массы груза и жёсткости пружины.

Учащиеся выясняют, что период колебаний зависит от массы прямо пропорционально и от жёсткости пружины обратно пропорционально (слайд 25)

Учитель: Как выталкивают машину, если она застряла?

Учащиеся: Нужно дружно по команде раскачивать машину.

Учитель: Правильно. При этом мы используем физическое явление, названное резонансом. Резонанс возникает только в том случае, когда частота собственных колебаний совпадает с частотой вынуждающей силы. Резонанс – это резкое возрастание амплитуды вынужденных колебаний (слайд 26). На пособии «Библиотека наглядных пособий» демонстрируется модель резонанса (механика, модель 27 «Раскачивание пружинного маятника» на частоте >2Гц).

Учащимся предлагается провести маркировку текста о влиянии резонанса. Пока выполняется работа, звучит «Лунная соната» Бетховена и вальс цветов Чайковского (Приложение 4 ). Маркировка текста производится следующими знаками (они находятся на стенде в кабинете): V – заинтересовало; + знал; – не знал; ? – хотел бы знать больше. Текст остаётся у каждого учащегося в тетради. На следующем уроке нужно вернуться к нему и ответить на вопросы учащихся, если они не найдут ответов дома.

III. Закрепление материала.

проходит в виде задач (слайд 27). Задача разбирается у доски.

Учащимся предлагается самостоятельно решить задачи по вариантам на листках успеваемости (слайд 28) В результате работы на уроке преподаватель выставляет общую оценку.

IV. Итоги урока.

Учитель: Что нового узнали сегодня на уроке?

V. Домашнее задание.

Всем выучить конспект урока. Решить задачу: по уравнению гармонического колебания найти всё, что можно (слайд 29). Найти ответы на вопросы при маркировке текста. Желающие находят материал о пользе резонанса и вреде резонанса (можно сделать сообщение, реферат, приготовить презентацию).