Откуда берется кислород - оттуда же откуда и вода. Кислород на земле

Всем известно, откуда берется кислород, но многие не знают истории появления этого элемента на планете. Это очень интересно, и, конечно, в двух словах невозможно описать этот сложный процесс, но я попробую рассказать о главных этапах.

Откуда на Земле появился кислород

Для того, чтобы разобраться в этом вопросе, необходимо понять, как формировалась Вселенная. Итак, первыми элементами в ее первоначальном составе были гелий и водород, которые образовали и зажгли звезды. По мере выгорания синтезировались иные элементы, но вот соотношение водорода к кислороду составляло 1 к 1000. То есть лишь малая часть их молекул вступила в реакцию, создав воду. Она превратилась в лед, который до сих пор содержится в кометах. На момент формирования Земли кислорода было более чем достаточно, однако, он был связан в минеральных соединениях и с водородом: в виде твердой и газообразной воды.

Выходит, что кислород присутствовал на планете еще задолго до первых растений, а уже они путем химических реакций начали высвобождать его в атмосферу. Поскольку молекулы кислорода весьма активно вступают в химические реакции, растения - ключевое условие для поддержания необходимого баланса в атмосфере.


Кислород: история элемента в эволюции

Первые организмы питались тем, что присутствовало в «первичном бульоне», то есть простейшей органикой. Побочным продуктом был углекислый газ, который накапливался в атмосфере. Но вскоре запасы органики истощились, и организмы эволюционировали, став анаэробными - способными самостоятельно синтезировать питательные вещества из CO2 и водорода, выделяя метан. Далее было следующее:

  • водород давал энергию для жизненных процессов, но запасы его стали истощаться;
  • возникла новая форма жизни с использованием фотосинтеза, где в качестве побочного элемента стал кислород;
  • он стал накапливаться в атмосфере.

Биологи утверждают, что кислород тогда был настоящим ядом для всего живого, а потому возникла необходимость в новых формах, которые стали применять его для поддержания жизни - возникло кислородное дыхание.

http://mirznayki.ru/lesa-legkie-planety/

Леса, легкие планеты?
01.07.2014 Размещено в ЗАНИМАТЕЛЬНАЯ ЗООЛОГИЯ
Комментариев нет
Лес
Лес
Есть такое заблуждение, которое вошло даже в учебники, леса – лёгкие планеты. Леса на самом деле производят кислород, а лёгкие потребляют. Так что это скорей «кислородная подушка». Так почему же данное утверждение является заблуждением? На самом деле кислород производят не только те растения, которые растут в лесу. Все растительные организмы, в том числе и обитатели водоёмов, и жители степей, пустынь постоянно производят кислород. Растения в отличие от животных, грибов и прочих живых организмов могут сами синтезировать органические вещества, используя для этого энергию света. Этот процесс называется фотосинтезом. В результате фотосинтеза выделяется кислород. Это побочный продукт фотосинтеза. Кислорода выделяется очень и очень много, собственно говоря, 99 % кислорода, который присутствует в атмосфере Земли растительного происхождения. И только 1 % поступает из мантии, нижележащего слоя Земли.

Конечно, деревья производят кислород, однако никто не задумывается о том, что они его ещё и тратят. И не только они, все остальные обитатели леса не могут быть без кислорода. Прежде всего, растения дышат сами, это происходит в темноте, когда фотосинтез не происходит. И нужно как-то утилизировать запасы органических веществ, которые они днём создали. То есть самим питаться. А для того, что бы питаться нужно, тратить кислород. Другое дело, что растения тратят кислород куда меньше, чем его производят. А это в десятки раз меньше. Однако не стоит забывать, что в лесу ещё существуют и животные, а также грибы, а также разнообразные бактерии, которые сами кислород не производят, но тем не менее им дышат. Значительное количество кислорода, которое лес произвёл в течении светлого времени суток будет использовано живыми организмами леса, для поддержки жизнедеятельности. Однако что-то останется. И это что-то около 60 % от того, что вырабатывает лес. Этот кислород поступает в атмосферу, но остаётся там не очень долго. Дальше лес сам изымает кислород опять-таки для своих нужд. А именно на разложение останков умерших организмов. В конечном итоге на утилизацию своих собственных отходов лес зачастую тратит в 1,5 раза больше кислорода, чем вырабатывает. Назвать его кислородной фабрикой планеты после этого нельзя. Правда, существуют лесные сообщества, которые работают по нулевому кислородному балансу. Это знаменитые тропические леса.

Тропический лес
Тропический лес
Тропический лес вообще уникальная экосистема, она весьма устойчивая, потому, что расход вещества равен производству. Но опять-таки излишка никакого не осталось. Так что даже тропические леса сложно назвать кислородными фабриками.

Так почему же тогда после города нам кажется, что в лесу чистый, свежий воздух, что там очень много кислорода? Всё дело в том, что выработка кислорода очень быстрый процесс, а вот расход – процесс очень медленный.

Торфяное болото
Торфяное болото
Так что же тогда является кислородными фабриками планеты? На самом деле это две экосистемы. Среди «сухопутных», являются торфяные болота. Как мы знаем в болоте процесс разложения отмершего вещества идёт очень и очень медленно, в результате чего мёртвые части растений проваливаются вниз, накапливаются, и образуются залежи торфа. Торф не разлагается, он спрессовывается и остаётся в виде огромного органического кирпича. То есть при торфообразовании много кислорода не тратиться. Таким образом болотная растительность кислород производит, а вот сама кислород употребляет очень мало. В результате именно болота дают именно ту прибавку, которая и остаётся в атмосфере. Однако настоящих, торфяных болот на суше не так-то много, и конечно им одним поддерживать кислородный баланс в атмосфере практически невозможно. И вот здесь помогает другая экосистема, которая называется мировой океан.

Фитопланктон
Фитопланктон
В мировом океане нет деревьев, травы в виде водорослей наблюдаются только возле побережья. Однако растительность в океане всё-таки существует. И основную её часть составляют микроскопические фотосинтезирующие водоросли, которые учёные называют фитопланктон. Эти водоросли настолько малы, что зачастую каждую из них невозможно увидеть простым глазом. Зато скопление их видны всех. Когда на море видны ярко-красные или ярко-зелёные пятна. Вот это и есть фитопланктон.

Каждая из этих маленький водорослей производит огромное количество кислорода. Потребляет сама очень мало. Из-за того, что они интенсивно делятся, количество производимого ими кислорода растёт. Одно фитопланктонное сообщество производит за день в 100 раз больше чем лес, занимающий такой объём. Но при этом тратят они очень мало кислорода. Потому, что когда водоросли умирают, они сразу проваливаются на дно, где их сразу же едят. После чего тех, кто их съел, едят другие, третьи организмы. И до дна доходят настолько мало останков, что они быстро разлагаются. Вот такого долгого, как в лесу, разложения, в океане просто нет. Там утилизация идёт очень быстро, в результате чего кислород фактически не тратится. И поэтому происходит «большая прибыль», и вот она и остаётся в атмосфере. Так что «лёгкими планеты» стоит считать вовсе не леса, а мировой океан. Именно он заботится о том, что бы нам было чем дышать.

Пожалуй, сейчас даже дети знают, что химическая формула воды - H 2 O. Однако это теория, а на деле в воде растворено огромное количество веществ как органического, так и неорганического происхождения. Чистая вода, как известно, не имеет вкуса и запаха, но кто угодно может убедиться в том, что в подавляющем большинстве случаев это не так. В питьевой воде, например, содержится некоторое количество минеральных солей, что придает ей солоноватый привкус. В той или иной степени в ней содержится все то, с чем она контактирует. Точный зависит от места ее забора, ведь в разных местах она контактирует с разными веществами. Кое-где химики найдут в жидкости тяжелые металлы, где-то - различные

Как же так получается?

Вода является универсальным растворителем. Дистилированная вода считается наиболее чистым в химическом смысле веществом, однако через некоторое время она утрачивает свое первоначальное состояние. И вот почему: вода является настолько хорошим растворителем, что со временем в нее попадают молекулы различных веществ из воздуха. В природе же это происходит еще и за счет жизнедеятельности различных организмов, живущих в водной среде.

Газы в воде

Наливая воду в стакан, можно увидеть пузырьки газа, которые будут находиться на стенках сосуда. Наряду с солями и другими веществами вода растворяет в себе и газы. Прежде всего из воздуха, а также кислород, а в некоторых случаях еще метан и сероводород. Причем холодная вода растворяет газы гораздо лучше, чем теплая, так что чем ниже температура, тем выше концентрация газов. И наоборот - с ростом температуры растворимость падает.

Источники растворенных в воде газов

Но откуда вообще все эти вещества берутся в воде? Азот, как правило, растворяется в процессе взаимодействия с атмосферой, метан - в результате контакта с породами и разложения донного ила, а сероводород образуется как продукт гниения органических остатков. Как правило, сероводород содержится в глубинных водных слоях и не поднимается к поверхности. При его высокой концентрации жизнь невозможна, так, например, в Черном море на глубинах более 150-200 метров из-за высокой насыщенности вод сероводором почти нет живых организмов, кроме некоторых бактерий.

Кислород также всегда содержится в воде. Он является универсальным окислителем, поэтому частично разлагает сероводород, снижая его концентрацию. Но откуда берется кислород в воде? О нем разговор пойдет особый.

Кислород

Практически все живые организмы нуждаются в кислороде. Люди дышат вохдухом, который представляет собой смесь газов, немалую часть которой составляет именно он.

Обитатели водной среды также нуждаются в этом веществе, так что концентрация кислорода в воде - это очень важный показатель. Обычно он составляет до 14 мг/л, если речь идет о природных водах, а иногда даже больше. В той же жидкости, которая течет из-под крана, кислорода содержится гораздо меньше, и это легко объяснить. Водопроводная вода после водозабора проходит через несколько этапов очистки, а растворенный кислород - крайне неустойчивое соединение. В результате газообмена с воздушной средой большая его часть просто улетучивается. Так откуда берется кислород в воде, если не из воздуха?

На самом деле это не совсем правда, из воздуха он тоже берется, но его доля, растворенная в результате контакта с атмосферой, крайне мала. Для того чтобы взаимодействие кислорода с водой было достаточно эффективным, необходимы особые условия: низкая температура, высокое давление и относительно низкая минерализация. Они соблюдаются далеко не всегда, и жизнь вряд ли бы существовала в нынешнем виде, если бы единственным способом образования этого газа в водной среде было взаимодействие с атмосферой. К счастью, есть еще два источника, откуда берется кислород в воде. Во-первых, растворенные молекулы газа в большом количестве содержатся в снеговых и дождевых водах, а во-вторых - и это основной источник - в результате фотосинтеза, осуществляемого водной растительностью и фитопланктоном.

Кстати, несмотря на то, что содержит кислород, извлечь его оттуда живые организмы, конечно, не в состоянии. Поэтому им остается довольствоваться именно растворенной долей.

О значении водорослей

Мало кто в обычной жизни задумывается, чем мы дышим и почему именно такой, какой он есть. Практически все знают, что большинство живых организмов, дышащих воздухом, приспособлено именно к такой смеси. Но если речь идет о наземно-воздушной среде, то вопросов не возникает. А откуда в воде кислород? Как и на земле, там много растений, которые с помощью процесса, который называют фотосинтезом, потребляя свет и углекислый газ, выделяют O 2 .

Если же быть точнее, в последние десятилетия по тем или иным причинам человечество уничтожило огромную часть лесов. Но речи о глобальном кризисе пока нет, хотя население планеты постоянно растет, и потребление кислорода
огромно. И огромное значение в этом вопросе имеют водоросли, которые обитают в Мировом океане, большей частью именно за их счет происходит насыщение воды кислородом. Некоторые их виды люди и морские обитатели употребляют в пищу, но их количество остается достаточным для эффективного фотосинтезирования. Вот откуда берется кислород в воде, а значит, благодаря газообмену с атмосферой, и в воздухе. Именно фотосинтез водорослей - его основной источник. Кстати, именно за счет процессов, происходящих в растениях, был накоплен первичный кислород в атмосфере, а сейчас происходит только поддержание ее неизменного состава.

Роль растворенного кислорода (РК)

Несмотря на то что дыхательная система водных обитателей устроена иначе, чем у жителей наземно-воздушной среды, они нуждаются все в тех же веществах. Прежде всего речь идет о кислороде, который играет важную роль в жизнедеятельности подавляющего большинства организмов. И если мы извлекаем его из атмосферы, где его доля более или менее стабильна и составляет около 21%, то жители рек, морей и океанов сильно зависят от того, сколько кислорода в воде содержится в месте их обитания. Помимо рыб, кислород нужен и растениям. Однако его продукция обычно выше, чем уровень потребления, так что это не должно вызывать беспокойства.

Нормальные показатели

Из-за своей значительной роли в нормальном функционировании экосистем, уровень РК часто подвергается контролю со стороны биологов и экологов. Ведь в природе все связано, нарушение газового баланса в одном водоеме может вызвать проблемы и в соседних, если они связаны. Как правило, замеры проводятся до полудня, в этот период концентрация газа в поверхностных водах становится максимальной и составляет до 14 мг/л. Этот показатель подвержен серьезным суточным и сезонным колебаниям, но он не должен опускаться ниже 4 мг/л.
Уменьшение концентрации до 2 мг/л и менее вызывает массовую гибель обитателей гидросферы. Фактически - от удушья. Постепенное снижение показателя может говорить о загрязнении водоема и также может со временем закончиться гибелью водных жителей.

РК в искусственно созданных экосистемах

Важное значение хорошая аэрация имеет, например, в аквариумистике. Именно поэтому необходимо не только устанавливать специальные насосы, закачивающие воздух в воду и насыщающие его кислородом, но и, например, при необходимости высаживать на дне различные водоросли. Конечно, тем, кто имеет подобное хобби, в первую очередь интересна эстетика экосистемы, однако нельзя забывать о ее устойчивости и некой долговечности.

Если же речь идет о производстве жемчуга и других специфических отраслях подобного типа, то помимо различных мер, направленных на сохранение достаточной концентрации растворенного кислорода в воде, необходимо регулярно проводить измерение этого показателя с помощью специальных проб. При их заборе крайне важно, чтобы не произошло контакта с воздухом, это может исказить результаты анализа.

Первая часть истории существования Земли была лишена кислорода, в этот период на ней не было жизни. До сих пор продолжаются дебаты относительно того, кто были главными биологическими игроками на безкислородной Земле, но большинство исследователей ищут корни данного вопроса в древнейших осадочных породах.

Большинство учёных предполагают, что количество кислорода на Земле было очень незначительным около 2,4 миллиардов лет назад, пока атмосфера не наполниласьь кислородом. Этот резкий скачок в содержании кислорода в атмосфере произошёл благодаря цианобактерии – фотосинтезирующему микробу, который выдыхает кислород.

Как и когда появились микробы, выдыхающие кислород, до сих пор не определено в связи с тем, что наполнение атмосферы кислородом представляло собой сложное сочетание глобального резкого похолодания, зарождения минеральных пород, а также появления новых видов.

«Мы пока не в состоянии определить, что является причиной, а что следствием», — отметил Доминик Папине, специалист вашингтонского института Карнеги. «Многие вещи произошли практически одновременно, поэтому так много неясностей». Для того, чтобы помочь разобраться в геологической стороне вопроса Папине изучает диапазон образований железа и осадочных пород, которые формируются на дне древних морей.

Исследование Папине сфокусировано на особых минералах, которые содержатся в образованиях железа, и которые могут быть связаны с возникновением жизни и смерти древних микробов. Минералы железа, находящиеся глубоко на дне морей, являются самым крупным источником железной руды. Тем не менее, этот источник представляет собой нечто большее, чем просто материал для изготовления стали. Геологи исследуют их, так как именно они имеют богатую историю, связанную с зарождением жизни на Земле.

Однако, их происхождение – это очень большая загадка. Самый последний вывод, к которому пришли большинство учёных, заключается в том, что для их формирования необходима помощь особых микроэлементов, к сожалению, пока ещё не выявлено каких именно. Эти простые одноклеточные морские создания не оставили ничего, что могло бы помочь исследователям воссоздать их образ и понять что они из себя представляют.

Возможно, что строителем этих железных минералов была цианобактерия, а кислород из этих бактерий и вызвал окисление железа в морях и океанах еще до великого кислородного взрыва. В таком случае почему, если цианобактерия на самом деле появилась задолго до накопления кислорода на Земле, прошло несколько сотен миллионов лет, прежде чем атмосфера наполнилась кислородом

Возможно, Папине и его коллеги нашли ответ на вопрос в виде сложного переплетения биологии и геологии. Кислород из цианобактерии мог быть разрушен метаном. При взаимодействии этих двух газов образуется углекислый газ и вода. Также они отметили, что кислород не может накапливаться в богатой метаном среде.

Метан появился из бактерий под названием метаногены, результатом поглощения этими бактериями углекислого газа и водорода, и стало появление метана. По этому сценарию развития событий, метаногены и цианобактерии верховенствовали в древних морях и океанах, но количество метаногенов было больше, поэтому, когда они вырабатывали метан, он перекрывал пути кислорода на накапливание, а также нагревал планету в результате парникового эффекта. Но после того, как Земля стала «кислородной», количество этих организмов резко сократилось, что позволило атмосфере заполниться этим газом.

События

Первая часть истории существования Земли была лишена кислорода, в этот период на ней не было жизни. До сих пор продолжаются дебаты относительно того, кто были главными биологическими игроками на безкислородной Земле, но большинство исследователей ищут корни данного вопроса в древнейших осадочных породах.

Большинство учёных предполагают, что количество кислорода на Земле было очень незначительным около 2,4 миллиардов лет назад, пока атмосфера не наполниласьь кислородом. Этот резкий скачок в содержании кислорода в атмосфере произошёл благодаря цианобактерии – фотосинтезирующему микробу, который выдыхает кислород.

Как и когда появились микробы, выдыхающие кислород, до сих пор не определено в связи с тем, что наполнение атмосферы кислородом представляло собой сложное сочетание глобального резкого похолодания, зарождения минеральных пород, а также появления новых видов.

"Мы пока не в состоянии определить, что является причиной, а что следствием", - отметил Доминик Папине, специалист вашингтонского института Карнеги. "Многие вещи произошли практически одновременно, поэтому так много неясностей". Для того, чтобы помочь разобраться в геологической стороне вопроса Папине изучает диапазон образований железа и осадочных пород, которые формируются на дне древних морей.

Исследование Папине сфокусировано на особых минералах, которые содержатся в образованиях железа, и которые могут быть связаны с возникновением жизни и смерти древних микробов. Минералы железа, находящиеся глубоко на дне морей, являются самым крупным источником железной руды. Тем не менее, этот источник представляет собой нечто большее, чем просто материал для изготовления стали. Геологи исследуют их, так как именно они имеют богатую историю, связанную с зарождением жизни на Земле.

Однако, их происхождение – это очень большая загадка. Самый последний вывод, к которому пришли большинство учёных, заключается в том, что для их формирования необходима помощь особых микроэлементов, к сожалению, пока ещё не выявлено каких именно. Эти простые одноклеточные морские создания не оставили ничего, что могло бы помочь исследователям воссоздать их образ и понять что они из себя представляют.

Возможно, что строителем этих железных минералов была цианобактерия, а кислород из этих бактерий и вызвал окисление железа в морях и океанах еще до великого кислородного взрыва. В таком случае почему, если цианобактерия на самом деле появилась задолго до накопления кислорода на Земле, прошло несколько сотен миллионов лет, прежде чем атмосфера наполнилась кислородом?

Возможно, Папине и его коллеги нашли ответ на вопрос в виде сложного переплетения биологии и геологии. Кислород из цианобактерии мог быть разрушен метаном. При взаимодействии этих двух газов образуется углекислый газ и вода. Также они отметили, что кислород не может накапливаться в богатой метаном среде.

Метан появился из бактерий под названием метаногены, результатом поглощения этими бактериями углекислого газа и водорода, и стало появление метана. По этому сценарию развития событий, метаногены и цианобактерии верховенствовали в древних морях и океанах, но количество метаногенов было больше, поэтому, когда они вырабатывали метан, он перекрывал пути кислорода на накапливание, а также нагревал планету в результате парникового эффекта. Но после того, как Земля стала "кислородной", количество этих организмов резко сократилось, что позволило атмосфере заполниться этим газом.