Анатомические и физиологические особенности спинного мозга. Рефлекторная деятельность спинного мозга Чатная физиология нервной системы


I. Структурно-функциональная характеристика.

Спинной мозг представляет собой тяж длиной 45 см у мужчин и около 42 см – у женщин. Он имеет сегментарное строение (31-33 сегмента). Каждый его сегмент связан с определенной частью тела. Спинной мозг включает пять отделов: шейный (С 1 -С 8), грудной (Th 1 -Th 12), поясничный (L 1 -L 5), крестцовый (S 1 -S 5) и копчиковый (Co 1 -Co 3). В процессе эволюции в спинном мозге сформировалось два утолщения: шейное (сегменты, иннервирующие верхние конечности) и пояснично-крестцовое (сегменты, иннервирующие нижние конечности) как результат повышенной нагрузки на эти отделы. В указанных утолщениях соматические нейроны наиболее крупные, их больше, в каждом корешке этих сегментов больше нервных волокон, они имеют наибольшую толщину. Общее количество нейронов спинного мозга – около 13 млн. Из них 3% - мотонейроны, 97% - вставочные нейроны, из которых часть нейронов, которые относятся к вегетативной нервной системе.

Классификация нейронов спинного мозга

Нейроны спинного мозга классифицируются по следующим признакам:

1) по отделу нервной системы (нейроны соматической и вегетативной нервной системы);

2) по назначению (эфферентные, афферентные, вставочные, ассоциативные);

3) по влиянию (возбуждающие и тормозные).

1. Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются эффекторными, поскольку они иннервируют непосредственно рабочие органы – эффекторы (скелетные мышцы), их называют мотонейронами. Различают ά- и γ- мотонейроны.

ά-Мотонейроны иннервируют экстрафузальные мышечные волокна (скелетная мускулатура), их аксоны характеризуются высокой скоростью проведения возбуждения – 70-120 м/с. ά-Мотонейроны подразделяют на две подгруппы: ά 1 – быстрые, иннервирующие быстрые белые мышечные волокна, их лабильность достигает 50 имп/с, и ά 2 – медленные, иннервирующие медленные красные мышечные волокна, их лабильность – 10-15 имп/с. Низкая лабильность ά-мотонейронов объясняется длительной следовой гиперполяризацией, сопровождающей ПД. На одном ά- мотонейроне насчитывается до 20 тысяч синапсов: от кожных рецепторов, проприорецепторов и нисходящих путей вышележащих отделов ЦНС.

γ-Мотонейроны рассеяны среди ά-мотонейронов, их активность регулируется нейронами вышележащих отделов ЦНС, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора). При изменении сократительной деятельности интрафузальных волокон под влиянием γ-мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует ά-мотонейроны мышцы-антагониста, тем самым регулируется тонус скелетных мышц и двигательные реакции. Эти нейроны обладают высокой лабильностью – до 200 имп/с, но их аксонам свойственна низкая скорость проведения возбуждения – 10-40 м/с.

2. Афферентные нейроны соматической нервной системы локализуются в спинальных ганглиях и ганглиях черепных нервов. Их отростки, проводящие афферентную импульсацию от мышечных, сухожильных и кожных рецепторов, вступают в соответствующие сегменты спинного мозга и образуют синаптические контакты либо непосредственно на ά-мотонейронах (возбуждающие синапсы), либо на вставочных нейронах.

3. Вставочные нейроны (промежуточные, интернейроны) устанавливают связь с мотонейронами спинного мозга, с чувствительными нейронами, а также обеспечивают связь спинного мозга с ядрами ствола мозга, а через них – с корой большого мозга. Интернейроны могут быть как возбуждающими, так и тормозными, имеющими высокую лабильность – до 1000 имп/с.

4. Нейроны вегетативной нервной системы. Нейроны симпатической нервной системы являются вставочными, расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга (C 8 -L 2). Эти нейроны фоновоактивны, частота разрядов 3-5 имп/с. Нейроны парасимпатического отдела нервной системы также вставочные, локализуются в сакральном отделе спинного мозга (S 2 -S 4) и также фоновоактивны.

5. Ассоциативные нейроны образуют собственный аппарат спинного мозга, который устанавливает связь между сегментами и внутри сегментов. Ассоциативный аппарат спинного мозга участвует в координации позы, тонуса мышц, движений.

Ретикулярная формация спинного мозга состоит из тонких перекладин серого вещества, пересекающихся в различных направлениях. Нейроны РФ имеют большое количество отростков. Ретикулярная формация обнаруживается на уровне шейных сегментов между передними и задними рогами, а на уровне верхнегрудных сегментов – между боковыми и задними рогами в белом веществе, примыкающем к серому.

Нервные центры спинного мозга

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетной мускулатуры.

1. Центры симпатического отдела вегетативной нервной системы локализованы в следующих сегментах: центр зрачкового рефлекса – С 8 – Th 2 , регуляция деятельности сердца – Th 1 – Th 5 , слюноотделения – Th 2 – Th 4 , регуляция функции почек – Th 5 – L 3 . Кроме этого здесь имеются сегментарно расположенные центры, регулирующие функции потовых желез и сосудов, гладких мышц внутренних органов, центры пиломоторных рефлексов.

2. Парасимпатическую иннервацию получают из спинного мозга (S 2 – S 4) все органы малого таза: мочевой пузырь, часть толстой кишки ниже ее левого изгиба, половые органы. У мужчин парасимпатическая иннервация обеспечивает рефлекторный компонент эрекции, у женщин – сосудистые реакции клитора и влагалища.

3. Центры управления скелетной мускулатурой находятся во всех отделах спинного мозга и иннервируют по сегментарному принципу скелетную мускулатуру шеи (C 1 – C 4), диафрагмы (C 3 – C 5), верхних конечностей (C 5 – Th 2), туловища (Th 3 – L 1) и нижних конечностей (L 2 – S 5).

Повреждения определенных сегментов спинного мозга или его проводящих путей вызывают специфические двигательные нарушения и расстройства чувствительности.

Каждый сегмент спинного мозга участвует в чувствительной иннервации трех дерматомов. Имеется дублирование и двигательной иннервации скелетных мышц, что повышает надежность их деятельности.

На рисунке показана иннервация метамеров (дерматомов) тела сегментами мозга: С – метамеры, иннервируемые шейными, Th – грудными, L – поясничными. S – крестцовыми сегментами спинного мозга, F – черепно-мозговыми нервами.

II. Функции спинного мозга – проводниковая и рефлекторная.

Проводниковая функция

Проводниковая функция спинного мозга осуществляется с помощью нисходящих и восходящих проводящих путей.

Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляется через передние корешки (закон Белла – Мажанди).

Каждый корешок представляет собой множество нервных волокон.

Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов:

1) от кожных рецепторов (болевых, температурных, прикосновения, давления, вибрации);

2) от проприорецепторов (мышечных - мышечных веретен, сухожильных – рецепторов Гольджи, надкостницы и оболочек суставов);

3) от рецепторов внутренних органов – висцерорецепторов (механо- и хеморецепторов).

Медиатором первичных афферентных нейронов, локализующихся в спинальных ганглиях, является, по-видимому, субстанция Р.

Значение афферентной импульсации, поступающей в спинной мозг, заключается в следующем:

1) участие в координационной деятельности ЦНС по управлению скелетной мускулатурой. При выключении афферентной импульсации от рабочего органа управление им становится несовершенным.

2) участие в процессах регуляции функций внутренних органов.

3) поддержание тонуса ЦНС; при выключении афферентной импульсации наступает уменьшение суммарной тонической активности ЦНС.

4) несет информацию об изменениях окружающей среды. Основные проводящие пути спинного мозга приведены в таблице 1.

Таблица 1. Основные проводящие пути спинного мозга

Восходящие (чувствительные) пути

Физиологическое значение

Клиновидный пучок (Бурдаха) проходит в задних столбах, импуьсация поступает в кору

Осознаваемая проприорецептивная импульсация от нижней части туловища и ног

Тонкий пучок (Голля), проходит в задних столбах, импульсация поступает в кору

Осознаваемая проприорецептивная импульсация от верхней части туловища и рук

Задний спинно-мозжечковый (Флексига)

Не осознаваемая проприорецептивная импульсация

Передний спинно-мозжечковый (Говерса)

Латеральный спиноталамический

Болевая и температурная чувствительность

Передний спиноталамический

Тактильная чувствительность, прикосновение, давление

Нисходящие (двигательные) пути

Физиологическое значение

Латеральный кортикоспинальный (пирамидный)

Импульсы к скелетным мышцам

Передний кортикоспинальный (пирамидный)

Руброспинальный (Монакова) проходит в боковых столбах

Импульсы, поддерживающие тонус скелетных мышц

Ретикулоспинальный, проходит в передних столбах

Импульсы, поддерживающие тонус скелетных мышц с помощью возбуждающих и тормозящих влияний на ά- и γ-мотонейроны, а также регулирующие состояние спинальных вегетативных центров

Вестибулоспинальный, проходит в передних столбах

Импульсы, обеспечивающие поддержание позы и равновесия тела

Тектоспинальный, проходит в передних столбах

Импульсы, обеспечивающие осуществление зрительных и слуховых двигательных рефлексов (рефлексов четверохолмия)

III. Рефлексы спинного мозга

Спинной мозг выполняет рефлекторную соматическую и рефлекторную вегетативную функции.

Сила и длительность всех спинальных рефлексов увеличиваются при повторном раздражении, при увеличении площади раздражаемой рефлексогенной зоны вследствие суммации возбуждения, а также при увеличении силы стимула.

Соматические рефлексы спинного мозга по своей форме в основном являются сгибательными и разгибательными рефлексами сегментарного характера. Соматические спинальные рефлексы можно объединить в две группы по следующим признакам:

Во-первых, по рецепторам, раздражение которых вызывает рефлекс: а) проприоцептивные, б) висцероцептивные, в) кожные рефлексы. Рефлексы, возникающие с проприорецептров, участвуют в формировании акта ходьбы и регуляции мышечного тонуса. Висцерорецептивные (висцеромоторные) рефлексы возникают с рецепторов внутренних органов и проявляются в сокращении мышц брюшной стенки, грудной клетки и разгибателей спины. Возникновение висцеромоторных рефлексов связано с конвергенцией висцеральных и соматических нервных волокон к одним и тем же интернейронам спинного мозга.

Во-вторых, по органам:

а) рефлексы конечностей;

б) брюшные рефлексы;

в) яичковый рефлекс;

г) анальный рефлекс.

1. Рефлексы конечностей . Эту группу рефлексов в клинической практике исследуют наиболее часто.

Сгибательные рефлексы. Сгибательные рефлексы делятся на фазные и тонические.

Фазные рефлексы – это однократное сгибание конечности при однократном раздражении кожи или проприорецепторов. Одновременно с возбуждением мотонейронов мышц-сгибателей происходит реципрокное торможение мотонейронов мышц-разгибателей. Рефлексы, возникающие с рецепторов кожи, являются полисинаптическими, они имеют защитное значение. Рефлексы, возникающие с проприорецепторов, могут быть моносинаптическими и полисинаптическими. Фазные рефлексы с проприорецепторов участвуют в формировании акта ходьбы. По степени выраженности фазных сгибательных и разгибательных рефлексов определяют состояние возбудимости ЦНС и возможные ее нарушения.

В клинике исследуют следующие сгибательные фазные рефлексы: локтевой и ахиллов (проприоцептивные рефлексы) и подошвенный рефлекс (кожный). Локтевой рефлекс выражается в сгибании руки в локтевом суставе, возникает при ударе рефлекторным молоточком по сухожилию m. вiceps brachii (при вызове рефлекса рука должна быть слегка согнута в локтевом суставе), его дуга замыкается в 5-6-ом шейных сегментах спинного мозга (С 5 – С 6). Ахиллов рефлекс выражается в подошвенном сгибании стопы в результате сокращения трехглавой мышцы голени, возникает при ударе молоточком по ахиллову сухожилию, рефлекторная дуга замыкается на уровне крестцовых сегментов (S 1 – S 2). Подошвенный рефлекс – сгибание стопы и пальцев при штриховом раздражении подошвы, дуга рефлекса замыкается на уровне S 1 – S 2 .

Тонические сгибательные , а также разгибательные рефлексы возникают при длительном растяжении мышц, их главное назначение – поддержание позы. Тоническое сокращение скелетных мышц является фоновым для осуществления всех двигательных актов, осуществляемых с помощью фазических сокращений мышц.

Разгибательные рефлексы , как сгибательные, бывают фазными и тоническими, возникают с проприорецепторов мышц-разгибателей, являются моносинаптическими. Одновременно со сгибательным рефлексом возникает перекрестный разгибательный рефлекс другой конечности.

Фазные рефлексы возникают в ответ на однократное раздражение мышечных рецепторов. Например, при ударе по сухожилию четырехглавой мышцы бедра ниже коленной чашечки возникает коленный разгибательный рефлекс вследствие сокращения четырехглавой мышцы бедра. Во время разгибательного рефлекса мотонейроны мышц-сгибателей тормозятся с помощью вставочных тормозных клеток Реншоу (реципрокное торможение). Рефлекторная дуга коленного рефлекса замыкается во втором – четвертом поясничных сегментах (L 2 – L 4). Фазные разгибательные рефлексы участвуют в формировании ходьбы.

Тонические разгибательные рефлексы представляют собой длительное сокращение мышц-разгибателей при длительном растяжении сухожилий. Их роль – поддержание позы. В положении стоя тоническое сокращение мышц-разгибателей предотвращает сгибание нижних конечностей и обеспечивает сохранение вертикального положения. Тоническое сокращение мышц спины обеспечивает осанку человека. Тонические рефлексы на растяжение мышц (сгибателей и разгибателей) называют также миотатическими.

Рефлексы позы – перераспределение мышечного тонуса, возникающее при изменении положения тела или отдельных его частей. Рефлексы позы осуществляются с участием различных отделов ЦНС. На уровне спинного мозга замыкаются шейные позные рефлексы. Имеется две группы этих рефлексов – возникающие при наклоне и при повороте головы.

Первая группа шейных позных рефлексов существует только у животных и возникает при наклоне головы вниз (кпереди). При этом увеличивается тонус мышц-сгибателей передних конечностей и тонус мышц-разгибателей задних конечностей, в результате чего передние конечности сгибаются, а задние разгибаются. При наклоне головы вверх (кзади) возникают противоположные реакции – передние конечности разгибаются вследствие увеличения тонуса их мышц-разгибателей, а задние конечности сгибаются вследствие повышения тонуса их мышц-сгибателей. Эти рефлексы возникают с проприорецепторов мышц шеи и фасций, покрывающих шейный отдел позвоночника. В условиях естественного поведения они увеличивают животному шанс достать пищу, находящуюся выше или ниже уровня головы.

Рефлексы позы верхних конечностей у человека утрачены. Рефлексы нижних конечностей выражаются не в сгибании или разгибании, а в перераспределении мышечного тонуса, обеспечивающего сохранение естественной позы.

Вторая группа шейных позных рефлексов возникает с тех же рецепторов, но только при поворотах головы вправо или влево. При этом повышается тонус мышц-разгибателей обеих конечностей на стороне, куда повернута голова, и повышается тонус мышц-сгибателей на противоположной стороне. Рефлекс направлен на сохранение позы, которая может быть нарушена вследствие изменения положения центра тяжести после поворота головы. Центр тяжести смещается в сторону поворота головы – именно на этой стороне повышается тонус мышц-разгибателей обеих конечностей. Подобные рефлексы наблюдаются и у человека.

Ритмические рефлексы – многократное повторное сгибание и разгибание конечностей. Примерами могут служить чесательный и шагательный рефлексы.

2. Брюшные рефлексы (верхний, средний и нижний) проявляются при штриховом раздражении кожи живота. Выражаются в сокращении соответствующих участков мускулатуры стенки живота. Это защитные рефлексы. Для вызова верхнего брюшного рефлекса раздражение наносят параллельно нижним ребрам непосредственно под ними, дуга рефлекса замыкается на уровне грудных сегментов спинного мозга (Th 8 – Th 9). Средний брюшной рефлекс вызывают раздражением на уровне пупка (горизонтально), дуга рефлекса замыкается на уровне Th 9 – Th10. Для получения нижнего брюшного рефлекса раздражение наносят параллельно паховой складке (рядом с ней), дуга рефлекса замыкается на уровне Th 11 – Th 12 .

3. Кремастерный (яичковый) рефлекс заключается в сокращении m. сremaster и поднимании мошонки в ответ на штриховое раздражение верхней внутренней поверхности кожи бедра (кожный рефлекс), это также защитный рефлекс. Его дуга замыкается на уровне L 1 – L 2 .

4. Анальный рефлекс выражается в сокращении наружного сфинктера прямой кишки в ответ на штриховое раздражение или укол кожи вблизи заднего прохода, дуга рефлекса замыкается на уровне S 2 – S 5 .

Вегетативные рефлексы спинного мозга осуществляются в ответ на раздражение внутренних органов и заканчиваются сокращением гладкой мускулатуры этих органов. Вегетативные рефлексы имеют в спинном мозге свои центры, которые обеспечивают иннервацию сердца, почек, мочевого пузыря и т.д.

IV. Спинальный шок

Перерезка или травма спинного мозга вызывает явление, получившее название спинального шока. Спинальный шок выражается в резком падении возбудимости и угнетении деятельности всех рефлекторных центров спинного мозга, расположенных ниже места перерезки. Во время спинального шока раздражители, которые обычно вызывали рефлексы, оказываются недейственными. В то же время деятельность центров, расположенных выше перерезки, сохраняется. После перерезки исчезают не только скелетно-моторные рефлексы, но и вегетативные. Снижается кровяное давление, отсутствуют сосудистые рефлексы, акты дефекации и мочеиспускания.

Продолжительность шока различна у животных, стоящих на различных ступенях эволюционной лестницы. У лягушки шок продолжается 3-5 минут, у собаки – 7-10 дней, у обезьяны – больше 1 месяца, у человека – 4-5 месяцев. Когда шок проходит, рефлексы восстанавливаются. Причиной спинального шока является выключение вышерасположенных отделов головного мозга, оказывающих на спинной мозг активирующее влияние, в котором большая роль принадлежит ретикулярной формации ствола мозга.



Спинной мозг – это важнейший элемент нервной системы, расположенный внутри позвоночного столба. Анатомически верхнее окончание спинного мозга соединено с головным мозгом, обеспечивая его периферическую чувствительность, а на другом конце имеется спинномозговой конус, знаменующий окончания этой структуры.

Спинной мозг находится в позвоночном канале, который надежно защищает его от внешних повреждений, а кроме того, дает возможность нормального стабильного кровоснабжения всех тканей спинного мозга по всей его протяженности.

Анатомическое строение

Спинной мозг является едва ли не самой древней нервной формацией, присущей всем позвоночным животным. Анатомия и физиология спинного мозга позволяют не только обеспечить иннервацию всего тела, но и устойчивость и защищенность этого элемента нервной системы. У людей позвоночник имеет массу особенностей, которые отличают его от всех других позвоночных существ, живущих на планете, что во многом связано с процессами эволюции и приобретения возможности прямохождения.

У взрослых мужчин длина спинного мозга составляет около 45 см, в то время как у женщин длина позвоночника в среднем оставляет 41 см. Средняя масса спинного мозга взрослого человека колеблется в пределах от 34 до 38 г, что составляет примерно 2% от общей массы головного мозга.

Анатомия и физиология спинного мозга отличаются сложной структурой, поэтому любое повреждение имеет системные последствия. Анатомия спинного мозга включает в себя значительное количество элементов, обеспечивающих функцию этой нервной формации. Стоит отметить, что, несмотря на то что головной и спинной мозг являются условно разными элементами нервной системы человека, все же нужно отметить, что граница между спинным и головным мозгом, проходящая на уровне пирамидных волокон, является очень условной. На самом деле, спинной и головной мозг являются цельной структурой, поэтому очень сложно их рассматривать по отдельности.

Спинной мозг внутри имеет полый канал, который принято называть центральным каналом. Пространство, которое имеется между оболочками спинного мозга, между белым и серым веществом заполнено спинномозговой жидкостью, которая во врачебной практике известна как ликвор. Структурно орган ЦНС в разрезе имеет следующие части и строение:

  • белое вещество;
  • серое вещество;
  • задний корешок;
  • нервные волокна;
  • передний корешок;
  • ганглий.

Рассматривая анатомические особенности спинного мозга, необходимо отметить довольно мощную защитную систему, которая не заканчивается на уровне позвоночника. Спинной мозг имеет собственную защиту, состоящую сразу из 3 оболочек, которая хоть и выглядит уязвимо, но все же обеспечивает сохранение не только всей структуры от механических повреждений, но и различных патогенных организмов. Орган ЦНС покрыт 3 оболочками, имеющими следующие названия:

  • мягкая оболочка;
  • паутинная оболочка;
  • твердая оболочка.

Пространство между самой верхней твердой оболочкой и твердыми костно-хрящевыми структурами позвоночника, окружающими спинномозговой канал, заполнено кровеносными сосудами и жировой тканью, что способствует сохранению целостности нейронов при движении, падениях и других потенциально опасных ситуациях.

При поперечном сечении срезы, взятые в разных частях столба, позволяют выявить неоднородность спинного мозга в разных отделах позвоночника. Стоит заметить, что, рассматривая анатомические особенности, сразу можно отметить наличие некой сегментарности, сопоставимой со структурой позвонков. Анатомия спинного мозга человека имеет одинаковое деление на сегменты, как и весь позвоночник. Выделяют следующие анатомические части:

  • шейную;
  • грудную;
  • поясничную;
  • крестцовую;
  • копчиковую.

Соотнесение той или иной части позвоночника с тем или иным сегментом спинного мозга зависит далеко не всегда от расположения сегмента. Принципом определения того или иного сегмента к той или иной части является наличие корешковых ответвлений в том или ином отделе позвоночника.

В шейной части спинной мозг человека имеет 8 сегментов, в грудной – 12, на поясничную и крестцовую части приходится по 5 сегментов, в то время на копчиковую – 1 сегмент. Так как копчик является рудиментарным хвостом, нередки анатомические аномалии в этой области, при которых спинной мозг в данной части находится не в одном сегменте, а в трех. В этих случаях у человека имеет место большее количество спинных корешков.

В случае если отсутствуют анатомические аномалии развития, у взрослого человека от спинного мозга отходят ровно 62 корешка, причем – 31 по одну сторону позвоночного столба и 31 по другую. По всей длине спинной мозг имеет неоднородную толщину.

Помимо естественно утолщения в области соединения головного мозга со спинным, а кроме того, естественного снижения толщины в области копчика, также выделяются утолщения в области шейного отдела и пояснично-крестцового сочленения.

Основные физиологические функции

Каждый из элементов спинного мозга выполняет свои физиологические функции и имеет свои анатомические особенности. Рассмотрение физиологических особенностей взаимодействия разных элементов лучше всего начинать со спинномозговой жидкости.

Спинномозговая жидкость, известная как ликвор, выполняет ряд крайне важных функций, поддерживающих жизнедеятельность всех элементов спинного мозга. Ликвор выполняет следующие физиологические функции:

  • поддержание соматического давления;
  • поддержание солевого баланса;
  • защита нейронов спинного мозга от травматического повреждения;
  • создание питательной среды.

Спинные нервы напрямую связны с нервными окончаниями, обеспечивающими иннервацию всех тканей тела. Контроль за рефлекторными и проводниковыми функциями осуществляется разными видами нейронов, входящими в состав спинного мозга. Так как нейроновая организация крайне сложна, была составлена классификация физиологических функций тех или иных классов нервных волокон. Классификация проводится по следующим признакам:

  1. По отделу нервной системы. К этому классу относятся нейроны вегетативной и соматической нервной системы.
  2. По назначению. Все нейроны, располагающиеся в спинном мозге, подразделяются на вставочные, ассоциативные, афферентные эфферентные.
  3. По способу влияния. Все нейроны подразделяются на возбуждающие и тормозящие.

Серое вещество

Белое вещество

  • задний продольный пучок;
  • клиновидный пучок;
  • тонкий пучок.

Особенности кровоснабжения

Спинной мозг является важнейшей частью нервной системы, поэтому этот орган имеет очень мощную и разветвленную систему кровоснабжения, обеспечивающую его всеми питательными веществами и кислородом. Кровоснабжение спинного мозга обеспечивается за счет следующих крупных кровеносных сосудов:

  • позвоночная артерия, берущая свое начало в подключичной артерии;
  • ответвление глубокой шейной артерии;
  • латеральные крестцовые артерии;
  • межреберная поясничная артерия;
  • передняя спинномозговая артерия;
  • задние спинномозговые артерии (2 шт.).

Кроме того, спинной мозг буквально обволакивает сеть мелких вен и капилляров, способствующих непрерывному питанию нейронов. При разрезе любого сегмента позвоночника сразу можно отметить наличие разветвленной сети мелких и крупных кровеносных сосудов. Нервные корешки имеют сопровождающие их кровеносные артериальные вены, причем каждый корешок имеет собственное кровеносное ответвление.

Кровоснабжение ветвей кровеносных сосудов берет свое начало из крупных артерий, обеспечивающих питание столба. Помимо всего прочего, кровеносные сосуды, питающие нейроны, питают и элементы позвоночного столба, таким образом, все эти структуры связаны единой кровеносной системой.

При рассмотрении физиологических особенностей нейронов приходится признать, что каждый класс нейронов находится в тесном взаимодействии с остальными классами. Итак, как уже отмечалось, существует 4 основных типа нейронов по их назначению, каждый из которых выполняет свою функцию в общей системе и взаимодействует с другими типами нейронов.

  1. Вставочные. Нейроны, относящиеся к этому классу, являются промежуточными и служат для обеспечения взаимодействия между афферентными и эфферентными нейронами, а также со стволом мозга, через который передаются импульсы в головной мозг человека.
  2. Ассоциативные. Нейроны, принадлежащие к этому виду, являются самостоятельным операционным аппаратом, обеспечивающим взаимодействие между разными сегментами, внутри имеющихся спинномозговых сегментов. Таким образом, ассоциативные нейроны являются управляющими для таких параметров, как тонус мышц, координация позиции тела, движений и т. д.
  3. Эфферентные. Нейроны, относящиеся к классу эфферентных, выполняют соматические функции, так как основной их задачей является иннервация основных органов рабочей группы, то есть скелетных мышц.
  4. Афферентные. Нейроны, относящиеся к этой группе, выполняют соматические функции, но при этом обеспечивают иннервацию сухожилий, кожных рецепторов, а кроме того, обеспечивают симпатическое взаимодействие в эфферентных и вставочных нейронах. Большая часть афферентных нейронов находится в ганглиях спинальных нервов.

Разные виды нейронов образуют целые пути, которые служат поддержанию связи спинного и головного мозга человека со всеми тканями тела.

Для того чтобы понять, как именно происходит передача импульсов, следует рассмотреть анатомические и физиологические особенности основных элементов, то есть серое и белое вещество.

Серое вещество

Серое вещество является самым функциональным. При разрезе столба видно, что серое вещество располагается внутри белого и имеет вид бабочки. В самом центре серого вещества располагается центральный канал, по которому наблюдается циркуляция ликвора, обеспечивающего его питание и поддержание баланса. При детальном рассмотрении можно выделить 3 основных отдела, каждый из которых имеет свои особые нейроны, обеспечивающие те или иные функции:

  1. Передняя область. В этой области содержатся двигательные нейроны.
  2. Задняя область. Задняя область серого вещества представляет собой рогообразное ответвление, которое имеет чувствительные нейроны.
  3. Боковая область. Эта часть серого вещества получила название боковых рогов, так как именно эта часть сильно разветвляется и дает начало спинальным корешкам. Нейроны боковых рогов дают начало вегетативной нервной системе, а также обеспечивают иннервацию всех внутренних органов и грудной клетки, брюшной полости и органов малого таза.

Передние и задние области не имеют четких граней и буквально сливаются друг с другом, образуя сложный спинномозговой нерв.

Помимо всего прочего, корешки, отходящие от серого вещества, являются составными частями передних корешков, другой составляющей которых являются белое вещество и другие нервные волокна.

Белое вещество

Белое вещество буквально обволакивает серое вещество. Масса белого вещества примерно в 12 раз превышает массу серого вещества. Борозды, имеющиеся в спинном мозге, служат для симметричного разделения белого вещества на 3 канатика. Каждый из канатиков обеспечивает свои физиологические функции в структуре спинного мозга и имеет свои анатомические особенности. Канатики белого вещества получили следующие названия:

  1. Задний канатик белого вещества.
  2. Передний канатик белого вещества.
  3. Боковой канатик белого вещества.

Каждый из этих канатиков включается в себя сочетания нервных волокон, образующих пучки и пути, необходимые для регулирования и передачи тех или иных нервных импульсов.

Передний канатик белого вещества включается в себя следующие пути:

  • передний корково-спинномозговой (пирамидный) путь;
  • ретикулярно-спинномозговой путь;
  • передний спиноталамический путь;
  • покрышечно-спинномозговой путь;
  • задний продольный пучок;
  • преддверно-спинномозговой путь.

Задний канатик белого вещества включается в себя следующие пути:

  • медиальный спинномозговой путь;
  • клиновидный пучок;
  • тонкий пучок.

Боковой канатик белого вещества включается в себя следующие пути:

  • красноядерно-спинномозговой путь;
  • латеральный корково-спинномозговой (пирамидный) путь;
  • задний спинно-мозжечковый путь;
  • передний спинно-мозжечковый путь;
  • латеральный спинно-таламический путь.

Существуют и другие пути проведения нервных импульсов разной направленности, но в настоящее время далеко не все атомические и физиологические особенности спинного мозга изучены достаточно хорошо, так как эта система является не менее сложной, чем головной мозг человека.

Спинной мозг представляет собой цилиндрической формы вытянутый тяж, несколько уплощенный спереди назад, расположенный в позвоночном канале. Длина спинного мозга у мужчин составляет около 45 см, у женщин - 41-42 см. Масса спинного мозга около 30 г, что составляет 2,3% массы головного мозга. Спинной мозг окружен тремя оболочками (твердой, паутинной и мягкой). Начинается спинной мозг на уровне нижнего края большого затылочного отверстия, где переходит в головной мозг. Нижняя граница суживающегося в виде конуса спинного мозга соответствует уровню верхнего края второго поясничного позвонка. Ниже этого уровня находится терминальная нить , окруженная корешками спинномозговых нервов и оболочками спинного мозга, образующими в нижней части позвоночного канала замкнутый мешок. В составе терминальной нити различают внутреннюю и наружную части. Внутренняя часть идет от уровня второго поясничного позвонка до уровня второго крестцового позвонка, она имеет длину около 15 см. Внутренняя часть терминальной нити, являющейся остатком конечного отдела эмбрионального спинного мозга, имеет незначительное количество нервной ткани. Наружная часть терминальной нити не содержит нервной ткани, является продолжением мозговых оболочек. Она имеет около 8 см в длину, срастается с надкостницей позвоночного канала на уровне второго копчикового позвонка (о строении позвоночника см. статью Строение и функции позвоночника).
Средний диаметр спинного мозга равен 1 см. Спинной мозг имеет два утолщения: шейное и пояснично-крестцовое, в толще которых располагаются нервные клетки (о строении нервной ткани см. статью Общее представление о строении и функциях нервной системы), чьи отростки идут соответственно к верхним и нижним конечностям. По средней линии на передней поверхности спинного мозга сверху вниз идет передняя срединная щель. На задней поверхности ей соответствует менее глубокая задняя срединная борозда. От дна задней срединной борозды до задней поверхности серого вещества через всю толщину белого вещества спинного мозга проходит задняя срединная перегородка. На передне-боковой поверхности спинного мозга, сбоку от передней срединной щели, с каждой стороны имеется передне-боковая борозда. Через передне-боковую борозду из спинного мозга выходят передние (двигательные) корешки спинномозговых нервов. На задне-боковой поверхности спинного мозга с каждой стороны имеется задне-боковая борозда, через которую в толщу спинного мозга входят нервные волокна (чувствительные) задних корешков спинномозговых нервов. Эти борозды разделяют белое вещество каждой половины спинного мозга на три продольных тяжа - канатика: передний, боковой и задний. Между передней срединной щелью и передне-боковой бороздой с каждой стороны находится передний канатик спинного мозга. Между передне-боковой и задне-боковой бороздами на поверхности правой и левой сторон спинного мозга виден боковой канатик . Позади задне-боковой борозды по бокам от задней срединной борозды, находится парный задний канатик спинного мозга.

Выходящий через передне-боковую борозду передний корешок образован аксонами двигательных (моторных) нейронов, залегающих в переднем роге (столбе) серого вещества спинного мозга. Задний корешок , чувствительный, образован совокупностью аксонов псевдоуниполярных нейронов. Тела этих нейронов образуют спинномозговой узел , располагающийся в позвоночном канале возле соответствующего межпозвоночного отверстия. В дальнейшем, в межпозвоночном отверстии, оба корешка соединяются друг с другом, образуя смешанный (содержащий чувствительные, двигательные и вегетативные нервные волокна) спинномозговой нерв, который затем делится на переднюю и заднюю ветви. На протяжении спинного мозга с каждой стороны имеется 31 пара корешков, образующих 31 пару спинномозговых нервов.
Участок спинного мозга, соответствующий двум парам корешков спинномозговых нервов (двум передним и двум задним) называют сегментом спинного мозга . Различают 8 шейных (С1-С8), 12 грудных (Th1-Th12), 5 поясничных (L1-L5), 5 крестцовых (S1-S5) и 1-3 копчиковых (Co1-Co3) сегмента (всего 31 сегмент). Верхние сегменты расположены на уровне соотвествующих их порядковому номеру тел шейных позвонков (рис. 2 ). Нижние шейные и верхние грудные сегменты находятся на один позвонок выше, чем тела соответствующих позвонков. В среднем грудном отделе эта разница равна двум позвонкам, в нижнем грудном - трем позвонкам. Поясничные сегменты располагаются на уровне тел десятого и одиннадцатого грудных позвонков, крестцовые и копчиковые сегменты соответствуют уровням двенадцатого грудного и первого поясничного позвонков. Такое несооветствие сегментов спинного мозга позвонкам обусловленно разной скоростью роста позвоночника и спинного мозга. Вначале, на II месяце внутриутробной жизни, спинной мозг занимает весь позвоночный канал, а затем вследствие более быстрого роста позвоночника отстает в росте и смещается относительно него вверх. Так что корешки спинномозговых нервов направляются не только в стороны, но еще и вниз, и тем больше вниз, чем ближе к хвостовому концу спинного мозга. Направление корешков в поясничной части спинного мозга внутри позвоночного канала становится почти параллельным продольной оси спинного мозга, так что мозговой конус и терминальная нить оказываются лежащими среди густого пучка нервных корешков, который получил название конского хвоста .

В опытах с перерезкой отдельных корешков у животных было установлено, что каждый сегмент спинного мозга иннервирует три поперечных отрезка, или метамера, тела: свой собственный, один выше и один ниже. Следовательно, каждый метамер тела получает чувствительные волокна от трех корешков и, для того чтобы лишить чувствительности участок тела, необходимо перерезать три корешка (фактор надежности). Скелетные мышцы (туловища и конечностей) также получают двигательную иннервацию от трех соседних сегментов спинного мозга. (Более подробно о сегментарном делении спинного мозга и зонах чувствительной и двигательной иннервации см. в статье Классификация уровня и степени тяжести травмы спинного мозга American Spinal Injury Association).

Внутреннее строение спинного мозга

В составе спинного мозга различают серое и белое вещество. Серое вещество располагается в центральных отделах спинного мозга, белое - на его периферии (рис.1 ).

Серое вещество спинного мозга

В сером веществе сверху вниз проходит узкий центральный канал. Вверху канал сообщается с четвертым желудочком головного мозга. Нижний конец канала расширяется и слепо заканчивается терминальным желудочком (желудочек Краузе). У взрослого человека местами центральный канал зарастает, его незаросшие участки содержат спинномозговую жидкость. Стенки канала выстланы эпендимоцитами.

Серое вещество на протяжении спинного мозга с обеих сторон от центрального канала образует образует два неправильной формы вертикальных тяжа - правый и левый серые столбы. Тонкая пластинка серого вещества, соединяющая спереди от центрального канала оба серых столба, называется передней серой спайкой. Сзади от центрального канала правый и левый столбы серого вещества соединены задней серой спайкой. У каждого столба серого вещества выделяют переднюю часть (передний столб) и заднюю часть (задний столб). На уровне между восьмым шейным сегментом и вторым поясничным сегментом включительно с каждой стороны серое вещество образует также латеральное (боковое) выпячивание - боковой столб. Выше и ниже этого уровня боковые столбы отсутствуют. На поперечном срезе спинного мозга серое вещество выглядит в виде бабочки или буквы Н, а три пары столбов образуют передний, задний и боковой рога серого вещества. Передний рог более широкий, задний рог - узкий. Боковой рог топографически соответствует боковому столбу серого вещества.
Серое вещество спинного мозга образовано телами нейронов, безмиелиновыми и тонкими миелиновыми волокнами и нейроглией.
В передних рогах (столбах) расположены тела наиболее крупных нейронов спинного мозга (диаметром 100-140 мкм). Они образуют пять ядер (скоплений). Эти ядра являются моторными (двигательными) центрами спинного мозга. Аксоны этих клеток составляют основную массу волокон передних корешков спинномозговых нервов. В составе спинномозговых нервов они идут на периферию и образуют моторные (двигательные) окончания в мышцах туловища, конечностей и в диафрагме (мышечной пластине, разделяющей грудную и брюшную полости и играющей главную роль при вдохе).
Серое вещество задних рогов (столбов) неоднородно. В составе задних рогов помимо нейроглии имеется большое количество вставочных нейронов, с которыми контактируют часть аксонов, идущих от чувствительных нейронов в составе задних корешков. Они представляют собой мелкие мультиполярные, так называемые ассоциативные и комиссуральные клетки. Ассоциативные нейроны имеют аксоны, которые заканчиваются на разных уровнях в пределах серого вещества своей половины спинного мозга. Аксоны комиссуральных нейронов заканчиваются на противоположной стороне спинного мозга. Отростки нервных клеток заднего рога осуществляют связь с нейронами выше- и нижележащих соседних сегментов спинного мозга. Отростки этих нейронов заканчиваются также на нейронах, расположенных в передних рогах своего сегмента.
В середине заднего рога имеется так называемое собственное ядро. Оно образовано телами вставочных нейронов. Аксоны этих нервных клеток переходят в боковой канатик белого вещества (см. ниже) своей и противоположной половины спинного мозга и участвуют в формировании проводящих путей спинного мозга (переднего спинно-мозжечкового и спинно-таламического путей).
В основании заднего рога спинного мозга находится грудное ядро (столб Кларка). Оно состоит из крупных вставочных нейронов (клеток Штиллинга) с хорошо развитыми, сильно разветвленными дендритами. Аксоны клеток этого ядра входят в боковой канатик белого вещества своей стороны спинного мозга и также образуют проводящие пути (задний спинно-мозжечковый путь).
В боковых рогах спинного мозга находятся центры вегетативной нервной системы. На уровне С8-Th1 расположен симпатический центр расширения зрачка. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт. Именно здесь лежат нейроны, непосредственно связанные с периферическими симпатическими ганглиями. Аксоны этих нейронов, образующих вегетативное ядро в сегментах спинного мозга с восьмого шейного по второй поясничный, проходят через передний рог, выходят из спинного мозга в составе передних корешков спинномозговых нервов. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции).
Нервные центры спинного мозга являются сегментарными, или рабочими, центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры больших полушарий, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров.

Рефлекторная функция спинного мозга

Серое вещество спинного мозга, задние и передние корешки спинномозговых нервов, собственные пучки белого вещества образует сегментарный аппарат спинного мозга . Он обеспечивает рефлекторную (сегментарную) функцию спинного мозга.
Нервная система функционирует по рефлекторным принципам. Рефлекс представляет собой ответную реакцию организма на внешнее или внутреннее воздействие и распространяется по рефлекторной дуге. Рефлекторные дуги - это цепи, состоящие из нервных клеток.

Рис. 3.
1 - чувствительный нейрон, 2 - спинномозговой узел, 3 - миелиновое нервное волокно, 4 - чувствительное нервное окончание, 5 - нервное окончание (бляшка) на мышечном волокне, 6 - спинномозговой нерв, 7 - корешки спинномозговых нервов, 8 - эфферентный (двигательный) нейрон в переднем роге спинного мозга.

Простейшая рефлекторная дуга включает чувствительный и эффекторный нейроны, по которым нервный импульс движется от места возникновения (от рецептора) к рабочему органу (эффектору) (рис.3 ). Тело первого чувствительного (псевдоуниполярного) нейрона находится в спинномозговом узле. Дендрит начинается рецептором, воспринимающим внешнее или внутреннее раздражение (механическое, химическое и др) и преобразующим его в нервный импульс, который достигает тела нервной клетки. От тела нейрона по аксону нервный импульс через чувствительные корешки спинномозговых нервов направляется в спинной мозг, где образует синапсы с телами эффекторных нейронов. В каждом межнейронном синапсе с помощью биологически активных веществ (медиаторов) происходит передача импульса. Аксон эффекторного нейрона выходит из спинного мозга в составе передних корешков спинномозговых нервов (двигательных или секреторных нервных волокон) и направляется к рабочему органу, вызывая сокращение мышцы, усиление (торможение) секреции железы.
Более сложные рефлекторные дуги имеют один или несколько вставочных нейронов. Тело вставочного нейрона в трехнейронных рефлекторных дугах находится в сером веществе задних столбов (рогов) спинного мозга и контактирует с приходящим в составе задних (чувствительных) корешков спинномозговых нервов аксоном чувствительного нейрона. Аксоны вставочных нейронов направляются к передним столбам (рогам), где располагаются тела эффекторных клеток. Аксоны эффекторных клеток направляются к мышцам, железам, влияя на их функцию. В нервной системе много сложных многонейронных рефлекторных дуг, у которых имеется несколько вставочных нейронов, располагающихся в сером веществе спинного и головного мозга.
Примером простейшего рефлекса может служить коленный рефлекс, возникающий в ответ на кратковременное растяжение четырехглавой мышцы бедра легким ударом по ее сухожилию ниже коленной чашечки. После короткого латентного (скрытого) периода происходит сокращение четырехглавой мышцы, в результате которого приподнимается свободно висящая нижняя часть ноги. Коленный рефлекс относится к числу так называемых рефлексов растяжения мышцы , физиологическое значение которых состоит в регуляции длины мышцы, что особенно важно для поддержания позы. Например, когда человек стоит, каждое сгибание в коленном суставе, даже такое слабое, что его невозможно ни увидеть, ни почувствовать, сопровождается растяжением четырехглавой мышцы и соответствующим усилением активности расположенных в ней чувствительных окончаний (мышечных веретен). В результате происходит дополнительная активация мотонейронов четырехглавой мышцы (коленный рефлекс), и повышение ее тонуса, противодействующее сгибанию. И наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения. Частота их импульсации, возбуждающей мотонейроны, уменьшается, и мышечный тонус ослабевает.
Как правило, в движении участвует несколько мышц, которые по отношению друг к другу могут выступать как агонисты (действуют в одном направлении) либо антагонисты (действуют разнонаправленно). Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении двигательных центров мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты. При раздражении чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через специальные вставочные нейроны (тормозные клетки Реншоу) - к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых - торможения. В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс.
Взаимодействие процессов возбуждения и торможения - универсальный принцип, лежащий в основе деятельности нервной системы. Конечно, он реализуется не только на уровне сегментов спинного мозга. Вышестоящие отделы нервной системы осуществляют свое регуляторное влияние, вызывая процессы возбуждения и торможения нейронов нижестоящих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, тем в большей степени высший отдел является распорядителем и распределителем деятельности организма (И. П. Павлов). У человека таким распорядителем и распределителем является кора больших полушарий головного мозга.
Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию (место нахождения), свой уровень. Так, например, центр коленного рефлекса находится во II - IV поясничном сегменте; ахиллова - в V поясничном и I - II крестцовых сегментах; подошвенного - в I - II крестцовом, центр брюшных мышц - в VIII - XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III - IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания.
Кроме двигательных рефлекторных дуг на уровне спинного мозга замыкаются вегетативные рефлекторные дуги, осуществляющие контроль за деятельностью внутренних органов.
Межсегментарные рефлекторные связи. В спинном мозге помимо описанных выше рефлекторных дуг, ограниченных пределами одного или нескольких сегментов, действуют восходящие и нисходящие межсегментарные рефлекторные пути. Вставочными нейронами в них служат так называемые проприоспинальные нейроны , тела которых находятся в сером веществе спинного мозга, а аксоны поднимаются или спускаются на различные расстояния в составе проприоспинальных трактов белого вещества, никогда не покидая спинной мозг. Опыты с дегенерацией нервных структур (в которых полностью изолируются отдельные части спинного мозга) показали, что к проприоспинальным нейронам относится большинство его нервных клеток. Некоторые из них образуют независимые функциональные группы, ответственные за выполнение автоматических движений (автоматических программ спинного мозга ). Межсегментарные рефлексы и эти программы способствуют координации движений, запускаемых на разных уровнях спинного мозга, в частности передних и задних конечностей, конечностей и шеи.
Благодаря этим рефлексам и автоматическим программам спинной мозг способен обеспечивать сложные согласованные движения в ответ на соответствующий сигнал с периферии или от вышележащих отделов центральной нервной системы. Здесь можно говорить о его интегративной (объединяющей) функции спинного мозга , хотя следует иметь в виду, что у высших позвоночных (в частности, у млекопитающих) возрастает регуляция спинальных функций высшими отделами центральной нервной системы (процесс энцефализации ).
Спинальная локомоция. Обнаружено, что основные характеристики локомоции, т. е. перемещения человека или животного в окружающей среде при помощи координированных движений конечностей, запрограммированы на уровне спинного мозга . Болевое раздражение какой-либо конечности спинального животного вызывает рефлекторные движения всех четырех; если же такая стимуляция продолжается достаточно долго, могут возникнуть ритмичные сгибательные и разгибательные движения не подвергающихся раздражению конечностей. Если такое животное поставить на тредмилл (бегущую дорожку), то при некоторых условиях оно будет совершать координированные шагательные движения, весьма сходные с естественными.
У спинального животного, анестезированного и парализованного кураре, в определенных условиях можно зарегистрировать ритмично чередующиеся залпы импульсов мотонейронов разгибателей и сгибателей, примерно соответствующие наблюдаемым при естественной ходьбе. Поскольку такая импульсация не сопровождается движениями, ее называют ложной локомоцией. Она обеспечивается пока еще не идентифицированными локомоторными центрами спинного мозга. По-видимому, для каждой конечности существует один такой центр. Активность центров координируется проприоспинальными системами и трактами, пересекающими спинной мозг в пределах отдельных ссгменгов.
Предполагают, что у человека тоже есть спинальные локомоторные центры. По-видимому, их активация при раздражении кожи проявляется в виде шагательного рефлекса новорожденного . Однако по мере созревания центральной нервной системы вышестоящие отделы, очевидно, настолько подчиняют себе такие центры. что у взрослого человека они утрачивают способность к самостоятельной активности. Тем не менее, активизация локомоторных центров путем интенсивной тренировки лежит в основе различных методик восстановления ходьбы у больных с повреждением спинного мозга (см. статью Эффективность интенсивной тренировки в восстановлении двигательной функции).
Таким образом, даже на уровне спинного мозга обеспечиваются запрограммированные (автоматические) двигательные акты. Подобные независимые от внешней стимуляции двигательные программы шире представлены в высших двигательных центрах. Некоторые из них (например, дыхание) врожденные, другие же (например, езда на велосипеде) приобретаются в процессе научения.

Белое вещество спинного мозга. Проводниковая функция спинного мозга

Белое вещество спинного мозга образовано совокупностью продольно ориентированных нервных волокон, идущих в восходящем или нисходящем направлении. Белое вещество окружает со всех сторон серое и разделяется, как уже упомянуто было выше, на три канатика: передний , задний , боковой . Кроме этого в нем выделяют переднюю белую спайку . Она располагается кзади от передней срединной щели и соединяет передние канатики правой и левой сторон.
Пучки нервных волокон (совокупность отростков) в канатиках спинного мозга составляют проводящие пути спинного мозга . Различают три системы пучков:

  1. Короткие пучки ассоциативных волокон связывают сегменты спинного мозга, расположенные на различных уровнях.
  2. Восходящие (афферентные, чувствительные) пути направляются к центрам головного мозга.
  3. Нисходящие (эфферентные, двигательные) пути идут от головного мозга к клеткам передних рогов спинного мозга.

В белом веществе передних канатиков проходят в основном нисходящие проводящие пути, в боковых канатиках - восходящие и нисходящие, в задних канатиках - восходящие проводящие пути.
Чувствительные (восходящие) пути. Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей).
Основная масса восходящих путей проводит проприоцептивную чувствительность. Это говорит о важности контроля движений, так называемой обратной связи, для двигательной функции организма. Пути проприоцептивной чувствительности направляются к коре полушарий большого мозга и в мозжечок, который участвует в координации движений. Проприоцептивный путь к коре больших полушарий представлен двумя пучками: тонким и клиновидным. Тонкий пучок (пучок Голля) проводит импульсы от проприорецепторов нижних конечностей и нижней половины тела и прилежит к задней срединной борозде в заднем канатике. Клиновидный пучок (пучок Бурдаха) примыкает к нему снаружи и несет импульсы от верхней половины туловища и от верхних конечностей. К мозжечку идут два спинно-мозжечковых пути - передний (Флексига) и задний (Говерса). Они располагаются в составе боковых канатиков. Передний спинно-мозжечковый путь служит для контроля положения конечностей и равновесия всего тела во время движения и позы. Задний спинно-мозжечковый путь специализирован для быстрой регуляции тонких движений верхних и нижних конечностей. Благодаря поступлению импульсов от проприоцепторов мозжечок участвует в автоматической рефлекторной координации движений. Особенно отчетливо это проявляется при внезапных нарушениях равновесия во время ходьбы, когда в ответ на изменение положения тела возникает целый комплекс непроизвольных движений, направленный на поддержание равновесия.
Импульсы болевой и температурной чувствительности проводит латеральный (боковой) спинно-таламический путь . Первым нейроном этого пути являются чувствительные клетки спинномозговых узлов. Их периферические отростки (дендриты) приходят в составе спинномозговых нервов. Центральные отростки образуют задние корешки и идут в спинной мозг, оканчиваясь на вставочных нейронах задних рогов (2-й нейрон). Отростки вторых нейронов через переднюю белую спайку переходят на противоположную сторону (образуют перекрест) и поднимаются в составе бокового канатика спинного мозга в головной мозг. В результате того, что волокна по пути перекрещиваются, импульсы от левой половины туловища и конечностей передаются в правое полушарие, а от правой половины - в левое.
Тактильную чувствительность (чувство осязания, прикосновения, давления) проводит передний спинно-таламический путь , идущий в составе переднего канатика спинного мозга.
Двигательные пути представлены двумя группами:
1. Передний и боковой (латеральный) пирамидные (кортико-спинальные) пути , проводящие импульсы от коры к двигательным клеткам спинного мозга, являющиеся путями произвольных (осознанных) движений. Они представлены аксонами гигантских пирамидных клеток (клеток Беца), залегающих в коре предцентральной извилины полушарий большого мозга. На границе со спинным мозгом большая часть волокон общего пирамидного пути переходит на противоположную сторону (образует перекрест) и образует боковой пирамидный путь, который спускается в боковом канатике спинного мозга, заканчиваясь на мотонейронах переднего рога. Меньшая часть волокон не перекрещивается и идет в переднем канатике, образуя передний пирамидный путь. Однако и эти волокна также постепенно переходят через переднюю белую спайку на противоположную сторону (образуют посегментный перекрест) и заканчиваются на двигательных клетках переднего рога. Отростки клеток переднего рога образуют передний (двигательный) корешок и заканчиваются в мышце двигательным окончанием. Таким образом, оба пирамидных пути являются перекрещенными. Поэтому при одностороннем повреждении головного или спинного мозга возникают двигательные нарушения ниже места повреждения на противоположной стороне тела. Пирамидные пути - двухнейронные (центральный нейрон - пирамидная клетка коры, периферический нейрон - мотонейрон переднего рога спинного мозга). При повреждении тела или аксона центрального нейрона наступает центральный (спастический) паралич , а при повреждении тела или аксона периферического нейрона - периферический (вялый) паралич .

Экстрапирамидные, рефлекторные двигательные пути

К ним относятся:
- красноядерно-спинномозговой (руброспинальный) путь - идет в составе боковых канатиков от клеток красного ядра среднего мозга к передним рогам спинного мозга, несет импульсы подсознательного управления движениями и тонусом скелетных мышц;
- текто-спинальный (покрышечно-спинальный) путь - идет в переднем канатике, связывает верхние холмики покрышки среднего мозга (подкорковые центры зрения) и нижние холмики (центры слуха) с двигательными ядрами передних рогов спинного мозга, функция его заключается в обеспечении координированных движений глаз, головы и верхних конечностей на неожиданные световые и звуковые воздействия;
- вестибуло-спинальный (предверно-спинальный) путь - направляется от преддверных (вестибулярных) ядер (8-й пары черепных нервов) к двигательным клеткам передних рогов спинного мозга, оказывает возбуждающее влияние на двигательные ядра мышц-разгибателей (антигравитационная мускулатура), причем преимущественно на осевые мышцы (мышцы позвоночного столба) и на мышцы поясов верхних и нижних конечностей. На сгибательную мускулатуру вестибуло-спинальный тракт оказывает тормозящее влияние.

Кровоснабжение спинного мозга

Спинной мозг кровоснабжается продольно идущими передней и двумя задними спинномозговыми артериями. Передняя спинномозговая артерия образуется при соединении спинномозговых ветвей правой и левой позвоночных артерий, и идет вдоль передней продольной щели спинного мозга. Задняя спинномозговая артерия, парная, прилежит к задней поверхности спинного мозга возле вхождения в него заднего корешка спинномозгового нерва. Эти артерии продолжаются на протяжении всего спинного мозга. Они соединяются со спинномозговыми ветвями глубокой шейной артерии, задних межреберных, поясничных и латеральных крестцовых артерий, проникающими в позвоночный канал через межпозвоночные отверстия.
Вены спинного мозга впадают во внутреннее позвоночное венозное сплетение.

Оболочки спинного мозга

Рис. 4. Спинной мозг и его оболочки в позвоночном канале. 1 - твердая оболочка спинного мозга, 2 - эпидуральное пространство, 3 - паутинная оболочка, 4 - задний корешок спинномозгового нерва, 5 - передний корешок, 6 - спинномозговой узел, 7 - спинномозговой нерв, 8 - подпаутинное (субарахноидальное) пространство, 9 - зубчатая связка.

Спинной мозг окружен тремя оболочками (рис. 4 ).
Снаружи располагается твердая мозговая оболочка . Между этой оболочкой и надкостницей позвоночного канала находится эпидуральное пространство. Кнутри от твердой мозговой оболочки имеется паутинная оболочка , отделенная от твердой мозговой оболочки субдуральным пространством. Непосредственно к спинному мозгу прилежит внутренняя мягкая мозговая оболочка . Между паутинной и внутренней мозговой оболочками располагается подпаутинное (субарахноидальное) пространство, заполненное спинномозговой жидкостью.
Твердая оболочка спинного мозга представляет собой слепой мешок, внутри которого находятся спинной мозг, передние и задние корешки спинномозговых нервов и остальные мозговые оболочки. Твердая мозговая оболочка плотная, образована волокнистой соединительной тканью, содержит значительное количество эластических волокон. Вверху твердая оболочка спинного мозга прочно срастается с краями большого затылочного отверстия и переходит в твердую оболочку головного мозга. В позвоночном канале твердая мозговая оболочка укрепляется ее отростками, продолжающимися в оболочки спинномозговых нервов. Эти отростки срастаются с надкостницей в области межпозвоночных отверстий. Твердую мозговую оболочку укрепляют также многочисленные фиброзные пучки, идущие к задней продольной связке позвоночника. Эти пучки лучше выражены в шейной, поясничной и крестцовой областях и хуже - в грудной области. В верхнем шейном отделе твердая оболочка покрывает правую и левую позвоночные артерии.
Наружная поверхность твердой мозговой оболочки отделена от надкостницы эпидуральным пространством . Оно заполнено жировой клетчаткой и содержит внутреннее позвоночное венозное сплетение. Внутренняя поверхность твердой оболочки спинного мозга отделена от паутинной оболочки щелевидным субдуральным пространством . Оно заполнено большим количеством тонких соединительнотканных пучков. Субдуральное пространство спинного мозга вверху сообщается с одноименным пространством головного мозга, внизу слепо заканчивается на уровне второго крестцового позвонка. Ниже этого уровня пучки фиброзных волокон твердой мозговой оболочки продолжаются в терминальную нить.
Паутинная оболочка спинного мозга представлена тонкой полупрозрачной соединительнотканной пластинкой, расположенной кнутри от твердой оболочки. Твердая и паутинная оболочки срастаются между собой только возле межпозвоночных отверстий. Между паутинной и мягкой оболочками (в субарахноидальном пространстве) расположена сеть перекладин, состоящих из тонких пучков коллагеновых и эластических волокон. Эти соединительнотканные пучки соединяют паутинную оболочку с мягкой оболочкой и со спинным мозгом.
Мягкая (сосудистая) оболочка спинного мозга плотно прилежит в поверхности спинного мозга. Соединительнотканные волокна, отходящие от мягкой оболочки, сопровождают кровеносные сосуды, заходят вместе с ними в ткань спинного мозга. Между паутинной и мягкой мозговыми оболочками находится подпаутинное , или субарахноидальное пространство . В нем содержится 120-140 мл спинномозговой жидкости. В верхних отделах это пространство продолжается в подпаутинное пространство головного мозга. В нижних отделах подпаутинное пространство спинного мозга содержит лишь корешки спинномозговых нервов. Ниже уровня второго поясничного позвонка пунктированием возможно получить для исследования спинномозговую жидкосгь, не рискуя повредить спинной мозг.
От боковых сторон мягкой мозговой оболочки спинного мозга, между передними и задними корешками спинномозговых нервов вправо и влево фронтально идет зубчатая связка . Зубчатая связка также срастается с паутинной и с внутренней поверхностью твердой оболочки спинного мозга, связка как бы подвешивает спинной мозг в субарахноидальном пространстве. Имея сплошное начало на боковых поверхностях спинного мозга, связка в латеральном направлении разделяется на 20-30 зубцов. Верхний зубец соответствует уровню большого затылочного отверстия, нижний расположен между корешками двенадцатого грудного и первого поясничного позвонков. Помимо зубчатых связок спинной мозг фиксируется в позвоночном канале при помощи задней подпаутинной перегородки. Эта перегородка начинается от твердой, паутинной и мягкой оболочек и соединяется с задней срединной перегородкой, имеющейся между задними канатиками белого вещества спинного мозга. В нижней поясничной и крестцовой областях спинного мозга задняя перегородка подпаутинного пространства, как и зубчатые связки, отсутствует. Жировая клетчатка и венозные сплетения эпидурального пространства, оболочки спинного мозга, спинномозговая жидкость и связочный аппарат предохраняют спинной мозг от сотрясений при движениях тела.

Литература

1. Антонен Е.Г. Спинной мозг (анатомо-физиологические и неврологические аспекты).
2. Сапин М.Р., Никитюк Д.Б. Анатомия человека. - В 3 томах. - М. - 1998. - Т.3.
3. Материалы сайта medicinform.net.

Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность .

Нейроны спинного мозга образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию спинного мозга.

Задние рога содержат нейроны (интернейроны), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором-четвертом сегментах – парасимпатического.

В составе спинного мозга имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны – нейроны собственного аппарата спинного мозга, они устанавливают связи внутри и между сегментами.

Белое вещество спинного мозга образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Рефлексы делятся на:

1) экстероцептивные (возникают при раздражении агентами внешней среды сенсорных раздражителей);

2) интероцептивные (возникают при раздражении прессо-, механо-, хемо-, терморецепторов): висцеро-висцеральные – рефлексы с одного внутреннего органа на другой, висцеро-мышечные – рефлексы с внутренних органов на скелетную мускулатуру;

3) проприоцептивные (собственные) рефлексы с самой мышцы и связанных с ней образований. Они имеют моносинаптическую рефлекторную дугу. Проприоцептивные рефлексы регулируют двигательную активность за счет сухожильных и позотонических рефлексов. Сухожильные рефлексы (коленный, ахиллов, с трехглавой мышцы плеча и т. д.) возникают при растяжении мышц и вызывают расслабление или сокращение мышцы, возникают при каждом мышечном движении;

4) позотонические рефлексы (возникают при возбуждении вестибулярных рецепторов при изменении скорости движения и положения головы по отношению к туловищу, что приводит к перераспределению тонуса мышц (повышению тонуса разгибателей и уменьшению сгибателей) и обеспечивает равновесие тела).

Исследование проприоцептивных рефлексов производится для определения возбудимости и степени поражения ЦНС.

Проводниковая функция обеспечивает связь нейронов спинного мозга друг с другом или с вышележащими отделами ЦНС.