Развитие химии полимеров и технологии синтетического каучука. Полимеры История полимеров

- 108.00 Кб

Из истории полимеров

Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е. к образованию полимеров (полимеры и сейчас часто называют "смолами").

В 1833 И. Берцелиусом для обозначения особого вида изомерии впервые был применен термин "полимерия". В этой изомерии вещества (полимеры), имеющие одинаковый состав, обладали различной молекулярной массой, например этилен и бутилен, кислород и озон. Однако тот термин имел несколько другой смысл, чем современные представления о полимерах. "Истинные" синтетические полимеры к тому времени еще не были известны.

А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. После создания А. М. Бутлеровым теории химического строения возникла химия полимеров. Наука о полимерах получила свое развитие, главным образом, благодаря интенсивным поискам способов синтеза каучука. В этих исследованиях принимали участие учёные многих стран, такие как Г. Бушарда, У. Тилден, немецкий учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и другие. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

В 30-х годах было доказано существование свободнорадикального и ионного механизмов полимеризации.

С начала 20-х годов 20 века Г. Штаудингер стал автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы. До этого предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория "малых блоков"). Однако открытие Г. Штаудингера заставило рассматривать полимеры как качественно новый объект исследования химии и физики.

Полимеры - это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

Полимеры можно классифицировать по происхождению. Они делятся на природные (биополимеры) и синтетические. К биополимерам можно отнести белки, нуклеиновые кислоты, природные смолы, а к синтетическим полимерам - полиэтилен, полипропилен, феноло-формальдегидные смолы.

Полимеры классифицируются еще и по расположению атомов в макромолекуле. Атомы или атомные группы могут располагаться в макромолекуле в виде:

  • открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
  • цепи с разветвлением (разветвленные полимеры, например, амилопектин), трехмерной сетки (сшитые полимеры, например, отверждённые эпоксидные смолы).

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (к ним относят поливинилхлорид, поликапроамид, целлюлозу).

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блок-сополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

По составу основной (главной) цепи полимеры подразделяют на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблок-сополимерами.

Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например, полиэтилен, полиметилметакрилат, политетрафторэтилен.

Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими.

Отдельную группу полимеров образуют неорганические полимеры, например, пластическая сера, полифосфонитрилхлорид.

Свойства и основные характеристики полимеров

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур: фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться, и размягчается при температуре около 80 °С.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко-текучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств:

  • способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям;
  • способность в высокоэластичном состоянии набухать перед растворением;
  • высокая вязкость растворов.

Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут вступать в следующие основные типы реакций:

  • образование химических связей между макромолекулами (так называемое сшивание), например, при вулканизации каучуков, дублении кожи;
  • распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимер-аналогичные превращения);
  • внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например, внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией.

Примером полимер-аналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1 – 2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С = О, С = N, N = С = О) или непрочные гетероциклические группировки.

Полимеры в сельском хозяйстве

Сегодня можно говорить, по меньшей мере, о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной, и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10 – 14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизировано; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60 – 70 см.

С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и, в меньшей мере, полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1 – 2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

Описание работы

Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е. к образованию полимеров (полимеры и сейчас часто называют "смолами").

1.1 История развития полимерных материалов

Получением искусственных полимеров люди занимаются с незапамятных времен. Например, варка столярного клея из рогов и копыт или казеинового из испорченного молока или сои были известны еще в Древнем Египте. Однако, химическая модификация природных полимеров проводилась неосознанно. Что именно происходит с полимерной структурой стало понятно лишь в конце 19-начале 20 века, после того, как Бутлеров создал теорию химического строения органических веществ. С тех пор модификация стала проводиться осознанно и целенаправленно.

Историю пластмасс принято отсчитывать от нитроцеллюлозы - в смеси с камфарой она дает пластмассу целлулоид. Его открыл англичанин Паркес, запатентовал его в 1856г, а в 1956 получил за него бронзовую медаль на Большой международной выставке. Вообще, большему числу модификаций подверглась именно целлюлоза: ее и нитровали, получая бездымный порох, и ацетилировали, и метилировали. Целлулоид считается матерью кинематографии - без этой пленки невозможно было бы создать синематограф. Однако, пожароопасность этой пластмассы привела к тому, что ее производство к началу 20 века практически упало до «0».

В конце 20 годов быстрое развитие электротехники, телефона и радио потребовало создания новых материалов с хорошими конструкционными и электроизоляционными свойствами: по первым буквам этих областей (электричество, телефон, радио) были названы новые материалы - этролы. Из них изготавливали корпуса приборов, чертежные инструменты (и по сей день). Полимером для этролов был триацетат целлюлозы. (Из него и сейчас производят негорючие пленки, заменившие целлулоидную) (Триацетат получают путем обработки целлюлозы уксусным ангидридом и уксусной кислотой)

В1887г был получен галалит-первая пластмасса на основе белка (казеина). Промышленное производство было освоено в 1929 английской фирмой ЭРИНОИД (И в настоящее время эта фирма производит листовые и формованные изделия из галалита). В настоящее время этот материал практически забыт, однако в связи с повышением цен на нефть и получаемые из нее мономеры, интерес к нему возрожден.

Во второй половине 19 века был открыт процесс вулканизации природного каучука путем нагревания с серой - получение резины.

В общем объеме мирового производства полимерных материалов целлюлозные пластики занимают всего 2-3%, но эти проценты удерживаются прочно, что связано с практически неисчерпаемой сырьевой базой (можно получать из отходов хлопкоперерабатывающей, лесоперерабатывающей промышленности, любое растительное сырье (листья банана, конопля))

Однако, природные и искусственные полимеры постепенно вытеснили полимеры синтетические.

В 1831г профессор Лебедев осуществил полимеризацию бутадиенового каучука.

В 1835г химиком Реньо был получен ПВХ, а в 1939 Симоном - полистирол. Однако, изучение данных веществ, полученных в ходе исследований ученых как побочный продукт реакции, не было. Такая же ситуация сложилась и с ФФС: в 1872г немецкий химик Байер изучал действие формальдегида на фенолы и заметил, что в реакционной смеси образуются смолянистые остатки, но изучать их не стал. Лишь на рубеже 19-20 веков, когда возникла техническая потребность в конструкционном и электроизоляционном материале появились пластмассы БАКЕЛИТ и КАРБОЛИТ, основой которых служат ФФС. Эти полимеры были заново изобретены в Бельгии в 1907г Бакелидом и у нас Петровым.

В 20-30 годах 20 века получили промышленное применение мочевино-формальдегидные, полиэфирные полимеры. Начиная с 30-х годов начали широко применяться методы полимеризации и были получены полистирол, поливинилацетат, поливинилхлорид и др. позднее появились новые виды поликонденсационных пластиков: полиамидные, полиуретановые и др.

Первая русская пластмасса была получена на основе ФФС в деревне Дубровка близ Орехово-Зуево.

Несмотря на молодость, пластмассы прочно заняли свое место в ряду строительных материалов. Это объясняется наличием у пластмасс целого комплекса ценных свойств: стойкостью к различным агрессивным воздействиям, низкой теплопроводностью, технологической легкостью обработки, возможностью склеиваться и свариваться и др.

Разработка стандарта организации ООО "Арсеньевский молочный комбинат" "Санитарная обработка оборудования для производства творога"

Согласно решению Арсеньевского Городского Совета Народных депутатов по наказу жителей города в Арсеньеве был построен гормолокозавод. Строительство продолжалось с ноября 1984 года по декабрь 1987...

Разработка холодильного агрегата

Еще за 400 лет до нашей эры персидские инженеры умели сохранять летом в раскаленной зноем пустыне лед, привезенный зимой с близлежащих гор. Стены подземного хранилища под названием "якшаль" имели толщину до двух метров и были сложены из блоков...

Расчет по комбикормам

Комбикормовой промышленности России около 75 лет. Первый в России комбикормовый цех производительностью 100 т/сут был построен в совхозе «Лесные поляны» недалеко от станции Болшево Московской области. В январе 1928 г...

Техническое обслуживание сетевого адаптера D-Link DGE-560T

Радиаторные системы В своей основе имеют радиатор, на котором может крепиться вентилятор (кулер). Наиболее часто встречаемая в компьютерах связка -- радиатор+вентилятор. В настоящее время бывают либо алюминиевые...

Турбокомпрессоры в двигателях внутреннего сгорания

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885--1896 г...

Электронно-лучевая сварка деталей гироскопа

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издревле люди ориентировались визуально по удалённым предметам, в частности, по Солнцу...

Удивительно, насколько разнообразны окружающие нас предметы и материалы, из которых они изготовлены. Раньше, примерно в XV-XVI веках, основными материалами были металлы и дерево, чуть позже стекло, почти во все времена фарфор и фаянс. А вот сегодняшний век - это время полимеров, о которых и пойдет речь дальше.

Понятие о полимерах

Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.

С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.

Каждое из этих определений верное, только первое с точки зрения бытовой, а второе - с точки зрения химической. Еще одним химическим определением является следующее. Полимеры - соединения, в основе которых лежат короткие участки цепи молекулы - мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.

Поэтому вопрос: "полимер - что это такое?" - требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.

Виды полимеров

Существует множество классификаций полимеров по различным признакам (химической природе, термостойкости, строению цепи и так далее). В ниже приведенной таблице коротко рассмотрим основные виды полимеров.

Классификация полимеров
Принцип Виды Определение Примеры
По происхождению (возникновению) Природные (натуральные) Те, что встречаются в естественных условиях, в природе. Созданы природой. ДНК, РНК, белки, крахмал, янтарь, шелк, целлюлоза, каучук натуральный
Синтетические Получены в лабораторных условиях человеком, не имеют отношения к природе. ПВХ, полиэтилен, полипропилен, полиуретан и другие
Искусственные Созданы человеком в лабораторных условиях, но на основе Целлулоид, ацетатцеллюлоза, нитроцеллюлоза
С точки зрения химической природы Органической природы Большая часть всех известных полимеров. В основе мономер органического вещества (состоит из атомов С, возможно включение атомов N, S, O, P и других). Все синтетические полимеры
Неорганической природы Основу составляют такие элементы, как Si, Ge, O, P, S, H и другие. Свойства полимеров: не бывают эластичными, не образуют макроцепей. Полисиланы, полидихлорфосфазен, полигерманы, поликремниевые кислоты
Элементоорганической природы Смесь органических и неорганических полимеров. Главная цепь - неорганика, боковые - органика. Полисилоксаны, поликарбоксилаты, полиорганоциклофосфазены.
Различие главной цепочки Гомоцепные Главная цепь представлена либо углеродом, либо кремнием. Полисиланы, полистирол, полиэтилен и другие.
Гетероцепные Основной остов из разных атомов. Полимеры примеры - полиамиды, белки, этиленгликоль.

Также различают полимеры линейного, сетчатого и разветвленного строения. Основа полимеров позволяет быть им термопластичными или термореактивными. Также они имеют различия по способности к деформации при обычных условиях.

Физические свойства полимерных материалов

Основные два агрегатных состояния, характерные для полимеров, это:

  • аморфное;
  • кристаллическое.

Каждое характеризуется своим набором свойств и имеет важное практическое значение. Например, если полимер существует в аморфном состоянии, значит, он может быть и вязкотекущей жидкостью, и стеклоподобным веществом и высокоэластичным соединением (каучуки). Это находит широкое применение в химических отраслях промышленности, строительстве, технике, производстве промышленных товаров.

Кристаллическое состояние полимеры имеют достаточно условное. На самом деле данное состояние перемежается с аморфными участками цепи, и в целом вся молекула получается очень удобной для получения эластичных, но в тоже время высокопрочных и твердых волокон.

Температуры плавления для полимеров различны. Многие аморфные плавятся при комнатной температуре, а некоторые синтетические кристаллические выдерживают довольно высокие температуры (оргстекло, стекловолокно, полиуретан, полипропилен).

Окрашиваться полимеры могут в самые разные цвета, без ограничений. Благодаря своей структуре они способны поглощать краску и приобретать самые яркие и необычные оттенки.

Химические свойства полимеров

Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.

В целом можно выделить несколько основных типов реакций, характерных для полимеров:

  1. Реакции, которые будут определяться функциональной группой. То есть если в состав полимера входит группа ОН, характерная для спиртов, значит, и реакции, в которые они будут вступать, будут идентичны таковым у окисление, восстановление, дегидрирование и так далее).
  2. Взаимодействие с НМС (низкомолекулярными соединениями).
  3. Реакции полимеров между собой с образованием сшитых сетей макромолекул (сетчатые полимеры, разветвленные).
  4. Реакции между функциональными группировками в пределах одной макромолекулы полимера.
  5. Распад макромолекулы на мономеры (деструкция цепи).

Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.

Применение полимеров в быту

Применение этих соединений повсеместно. Мало можно вспомнить областей промышленности, народного хозяйства, науки и техники, в которых не нужен был бы полимер. Что это такое - полимерное хозяйство и повсеместное применение, и чем оно исчерпывается?

  1. Химическая промышленность (производство пластмасс, дубильных веществ, синтез важнейших органических соединений).
  2. Машиностроение, авиастроение, нефтеперерабатывающие предприятия.
  3. Медицина и фармакология.
  4. Получение красителей и пестицидов и гербицидов, инсектицидов сельского хозяйства.
  5. Строительная промышленность (легирование сталей, конструкции звуко- и теплоизоляции, строительные материалы).
  6. Изготовление игрушек, посуды, труб, окон, предметов быта и домашней утвари.

Химия полимеров позволяет получать все новые и новые, совершенно универсальные по свойствам материалы, равных которым нет ни среди металлов, ни среди дерева или стекла.

Примеры изделий из полимерных материалов

Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.

Основными материалами, изготовленными из полимеров, являются:

  • пластмассы;
  • полипропилены;
  • полиуретаны;
  • полистиролы;
  • полиакрилаты;
  • фенолформальдегидные смолы;
  • эпоксидные смолы;
  • капроны;
  • вискозы;
  • нейлоны;
  • клеи;
  • пленки;
  • дубильные вещества и прочие.

Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров - практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).

Полимеры в различных отраслях науки и техники

Мы уже затрагивали вопрос о том, в каких областях применяются полимеры. Примеры, показывающие их значение в науке и технике, можно привести следующие:

  • антистатические покрытия;
  • электромагнитные экраны;
  • корпусы практически всей бытовой техники;
  • транзисторы;
  • светодиоды и так далее.

Нет никаких ограничений фантазии по применению полимерных материалов в современном мире.

Производство полимеров

Полимер. Что это такое? Это практически все, что нас окружает. Где же они производятся?

  1. Нефтехимическая (нефтеперерабатывающая) промышленность.
  2. Специальные заводы по производству полимерных материалов и изделий из них.

Это основные базы, на основе которых получают (синтезируют) полимерные материалы.


?СОДЕРЖАНИЕ

1. Введение.
2. Основные этапы развития химии и технологии полимеров.
2.1. История научных взглядов в химии полимеров.
2.2. История развития технологии каучука.
2.2.1. История открытия натурального каучука и его технологии переработки в изделия.
2.2.2. История открытий, обеспечивших создание технологии СК.
2.2.3. История создания и развития технологии синтетического каучука.
2.3. История развития технологии пластмасс.
2.4. История развития технологии синтетических волокон.
2.5. История развития технологи лакокрасочных материалов.
3. Литература.

ВВЕДЕНИЕ
Химия высокомолекулярных соединений (ВМС, полимеров) – раздел химии, химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).
Своеобразные и ценные физико-химические свойства многих полимеров:
- высокоэластические свойства;
- диэлектрические свойства;
- способность образовать высокопрочные анизотропные волокна и пленки;
- способность резко изменить свои свойства под действием малого количества реагента и др.
обусловили глубокий интерес человека к этому классу веществ и в короткий срок выделили химию высокомолекулярных соединений в самостоятельную отрасль химии.
Особое место занимают полимеры в живой природе. Примерно 1/3 растительной массы составляет целлюлоза. Целлюлоза и крахмал, ДНК и РНК, белки и пептиды – суть биополимеры, свойства которых разграничивают живое и неживое. Природные полимеры с помощью экстракции, фракционного осаждения и др. методов могут быть выделены из растительного и животного сырья. Ввиду дефицита природного сырья первостепенной задачей химии полимеров является разработка способов синтеза полимеров с нужными свойствами.
Спектр применения различных полимеров чрезвычайно широк и выходит за рамки данного введения. Отметим лишь, что номенклатура резиновых изделий, изготовляемых из синтетического каучука, составляет около 50 тысяч наименований, при этом более половины общего потребления синтетических каучуков составляет шинная промышленность.

2. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ХИМИИ И ТЕХНОЛОГИИ ПОЛИМЕРОВ.
2.1. ИСТОРИЯ НАУЧНЫХ ВЗГЛЯДОВ В ХИМИИ ПОЛИМЕРОВ.
Термин "полимерия" был введён в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о полимерах. "Истинные" синтетические полимеры к тому времени ещё не были известны.
Ряд полимеров был, по-видимому, получен ещё в первой половине XIX в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е., собственно, к образованию полимеров (до сих пор полимеры часто называли "смолами"). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).
Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 1860-х гг.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. А.М. Бутлеров предложил рассматривать способность непредельных соединений к полимеризации в качестве критерия их реакционной способности. Отсюда берут свое начало классические работы в области полимеризационных и изомеризационных процессов А. Е. Фаворского, В. Н. Ипатьева и С. В. Лебедева. От исследований нефтяных углеводородов В. В. Марковниковым и затем Н. Д. Зелинским протягиваются нити к современным работам по синтезу всевозможных мономеров из нефтяного сырья.
Здесь следует отметить, что с самого начала промышленне производство полимеров развивалось по двум направлениям: путем переработки природных полимеров в искусственные полимерные материалы и получения синтетических полимеров из органических низкомолекулярных соединений. В первом случае крупнотоннажное производство базируется на целлюлозе, первый материал из физически модифицированной целлюлозы – целлофан, был получен в 1908 г.
Наука о синтезе полимеров из мономеров оказалась куда более масштабным явлением в плане стоящих перед учеными задач.
Несмотря на изобретение в начале XX века способа получения фенолформальдегидных смол Бакеландом не существовало понимания процесса полимеризации. Лишь в 1922 г. немецкий химик Герман Штаудингер выдвинул определение макромолекула – длинной конструкции из атомов, связанных ковалентными связями. Он же первым установил взаимосвязь между молекулярной массой полимера и вязкостью его раствора. Впоследствие американский химик Герман Марк исследовал форму и размер макромолекул в растворе.
Тогда же в 1920-1930-е гг. благодаря передовым работам Н. Н. Семенова в области цепных реакций было обнаружено глубокое сходство механизма полимеризации с цепными реакциями, которые изучал Н. Н. Семенов.
В 30-х гг. было доказано существование свободнорадикального (Г.Штаудингер и др.) и ионного (Ф.Уитмор и др.) механизмов полимеризации.
В СССР в середине 1930-х гг. С.С. Медведев сформулировал понятие «инициирование» полимеризации как результатк распада перекисных соединений с образованием радикалов. Им же были оценены количественно реакции передачи цепи как процессы регулирования молекулярной массы. Исследования механизмов свободнорадикальной полимеризации проводились вплоть до 1950-х гг.
Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса, который ввел в химию высокомолекулярных соединений понятия функциональности мономера, линейной и трехмерной поликонденсации. Он же в 1931 синтезировал совместно с Дж.А.Ньюландом хлоропреновый каучук (неопрен) и в 1937 разработал метод получения полиамида для формования волокна типа найлон.
В 1930-е гг. развивалось и учение о структуре полимеров, А.П.Александров впервые развил в 30-х гг. представления о релаксационной природе деформации полимерных тел; В.А.Каргин установил в конце 30-х гг. факт термодинамической обратимости растворов полимеров и сформулировал систему представлений о трех физических состояниях аморфных высокомолекулярных соединений.
До Второй мировой войны наиболее развитые страны освоили промышленное производство СК, полистирола, поливинилхлорида и полиметилметакрилата.
В 1940-е гг. американский физико-химик Флори внес значительный вклад в теорию растворов полимеров и статистическую механику макромолекул, Флори создал методы определения строения и свойств макромолекул из измерений вязкости, седиментации и диффузии.
Эпохальным событием в химии полимеров стало открытие К. Циглером в 1950-е гг. металлокомплексных катализаторов, что привело к появлению полимеров на основе полиолефинов: полиэтилена и полипропилена, которые стали получать при атмосферном давлении. Затем были внедрены в массовое производство полиуретаны (в частности поролон), а также полисилоксаны.
В 1960-1970-е гг. получены уникальные полимеры – ароматические полиамиды, полиимиды, полиэфиркетоны, содержащие в своей структуре ароматические циклы, и характеризующиеся огромной прочностью и термостойкостью. В частности, в 1960-е гг. Каргин В.А. и Кабанов В.А. положили начало новому виду полимерообразования – комплексно-родикальной полимеризации. Ими было показано, что активность непредельных мономеров в реакциях радикальной полимеризации может быть значительно повышена путем связывания их в комплексы с неорганическими солями. Так были получены полимеры неактивных мономеров: пиридина, хинолина и др.

2.2. ИСТОРИЯ РАЗВИТИЯ ТЕХНОЛОГИИ КАУЧУКА.
2.2.1. ИСТОРИЯ ОТКРЫТИЯ НАТУРАЛЬНОГО КАУЧУКА И ЕГО ТЕХНОЛОГИИ ПЕРЕРАБОТКИ В ИЗДЕЛИЯ.
Первое знакомство человека с каучуком произошло в XV веке. На о. Гаити Х. Колумб и его спутники видели ритуальные игры туземцев с мячами из эластичной древесной смолы. По запискам Шарлю Мари де ля Кондамина, опубликованным в 1735 г. европейцы узнали, что дерево, из которого добывается каучук, на языке перуанских индейцев называется «Heve». При надрезании коры дерева выделяется сок, который по-испански назван латексом. Латекс применяли для пропитки тканей.
Во начале XIX века началось исследование каучука. В 1823 г. англичанин Карл Макинтош организовал производство непромокаемых прорезиненных тканей и плащей на их основе. Англичанин Томас Гэнкок в 1826 г. открыл явление пластикации каучука. Потом в пластифицированный каучук стали вводить различные добавки и возникла технология наполненных резиновых смесей. В 1839 г. Американец Чарльз Гудьир открыл способ получения нелипкой прочной резины путем нагревания каучука с оксидом свинца и серой. Процесс был назван вулканизацией. Во второй половине XIX века спрос на натуральный каучук быстро нарастает. В 1890-е гг. появляются первые каучуковые шины. Возникает большое количество каучуковых плантаций в различных жарких странах (в настоящее время Индонезия и Малайзия) лидируют в производстве натурального каучука.

2.2.2. ИСТОРИЯ ОТКРЫТИЙ, ОБЕСПЕЧИВШИХ СОЗДАНИЕ ТЕХНОЛОГИИ СК.
В 1825 г. Майкл Фарадей, исследуя пиролиз натурального каучука, установил, что его простейшая формула C5H8. В 1835 г. немецкий химик Ф.К. Химмли впервые выделил изопрен C5H8. В 1866 г. французский химик Пьер Бертло получил бутадиен, пропуская через нагретую железную трубку смесь этилена и ацетилена.
В 1860-1870-х гг. А.М. Бутлеров выяснил структуру многих олефинов и многие из них заполимеризовал, в частности изобутилен под действием серной кислоты.
В 1878 г. русский химик А.А. Кракау открыл способность полимеризации непредельных соединений под действием щелочных металлов.
В 1884 г английский химик У. Тилден доказал, что получал изопрен при термическом разложении скипидара, он же установил состав и строение изопрена, высказал мысль о том, что склонность изопрена к полимеризации может быть использована для полученя синтетического каучука. В 1870-е гг. французский химик Г. Бушарда выделил из продуктов термического разложения каучука изопрен, действием на него высокой температуры и соляной кислоты он получил каучукообразный продукт.
В 1901-1905 гг. В. Н. Ипатьев синтезировал бутадиен из этилового спирта при высоких 400-500 атм давлениях. Он же сумел первым в 1913 г. заполимеризовать этилен, что не удавалось до этого никому из исследователей.
В 1908 г. М.К. Кучеров получил натрий-изопреновый каучук (результат опубликовал в 1913 г.).
В 1909 г. С.В. Лебедев впервые продемонстрировал каучук полученный из дивинила.
Еще в 1899 г И. Л. Кондаков разработал метод получения диметилбутадиена и доказал, что последний способен превращаться в каучукоподобное вещество под воздействием света, а также некоторых реагентов, например натрия. На основе работ Кондакова в Германии в 1916 г. Фриц Гофман организовал производство т.н. метилкаучука: твёрдого ("Н") и мягкого ("W") синтетического каучука.
В 1910 г Карл Дитрих Гарриес запатентовал способ полимеризации изопрена под воздействием металлического натрия. Он же в 1902 г. разработал метод озонирования каучука и этим методом установил строение различных видов каучуков.
В 1911 г. И. И. Остромысленский получил бутадиен из ацетальдегида. В 1915 г. Бызов Б. В. получил патент на получение бутадиена пиролизом нефти.

2.2.3. ИСТОРИЯ СОЗДАНИЯ И РАЗВИТИЯ ТЕХНОЛОГИИ СИНТЕТИЧЕСКОГО КАУЧУКА.
Начиная еще со второй половины XIX века, усилия многих химиков разных стран были направлены на изучение способов получения мономеров и способов их полимеризации в каучукообразные соединения. В 1911 г И. И. Остромысленский предложил получение бутадиена из спирта в три стадии с выходом 12%. В России эта работа была оценена очень высоко. Дело в том, что российские химики в противовес западным химикам стремились получить синтетический каучук из бутадиена, а не изопрена. Возможно, что именно благодаря этому и наличию в России большой спиртовой базы, в России стало возможно создание технической базы по производству синтетического каучука.
В 1926 г. ВСНХ СССР объявил конкурс на разработку технологии получения синтетического каучука, в соответствии с условиями которого 1 января 1928 г. необходимо было представить описание процесса и не менее 2 кг каучука полученного по этому способу. Наиболее разработанными оказались проекты Лебедева С. В. и Бызова Б.В. И в той, и в другой проектных работах предусматривалось получение синтетического каучука из бутадиена. Лебедев предлагал получение бутадиена из спирта в одну стадию на разработанном им катализаторе, обладающим дегидрирующими и дегитратирующими свойствами. Бызов предлагал получение бутадиена из углеводородов нефти. Несмотря на большие достижения российских и советских химиков в области переработки нефти, сырьевой базы для производства бутадиена по методу Бызова не было. Поэтому в январе 1931 года Совет труда и обороны принял решение построить три больших однотипных завода СК по методу Лебедева. Был создан Ленинградский опытный завод «Литер Б» (ныне ВНИИСК) на котором в 1931 году была получена первая партия дивинильного каучука. В 1932-1933 гг. заработали заводы СК в Ярославле, Воронеже, Ефремове, Казани.
В 1941 г. был пущен завод хлоропренового каучука в Ереване.
В 1935 г. наступила новая эра в про­изводстве синтетических каучуков - их стали делать из сополимеров, полу­чаемых радикальной полимеризацией 1,3-бутадиена в присутствии стирола, акрилонитрила и других соединений. В 1938 было организовано промышленное производство бутадиен-стирольных каучуков в Германии, в 1942 - крупное производство синтетического каучука в США.
Здесь следует отметить, что после 1945 г. наметился постепенный отход от получения бутадиена из пищевого спирта с постепенным переходом к получению мономеров из нефти.
Каучуки на основе бутадиена и его сополимеров, решив основную задачу по налаживанию производства покрышек, камер и других изделий все же не обеспечивали того уровня эксплуатационных свойств, которые характерны для изделий из натурального каучука. Поэтому поиск путей выхода на полимеры на основе изопрена не прекращался. В СССР в этой области следует отметить исследования Ставицкого и Ракитянского по изучению полимеризации изопрена в присутствии лития, натрия и их органических производных. Полученные полимеры превосходили по своим эластическим свойствам и прочностью при растяжении дивинильному каучуку, но все же уступали по показателям натуральному каучуку.
В 1948 г. Коротков установил, что физико-механические свойства полимера улучшаются с увеличением содержания звеньев присоединения в положения цис-1,4, наибольшее количество цис-звеньев образуется в присутствии литийорганических соединений.
В 1955 г. К. Циглер открыл новые каталитические системы, ведущие процесс полимеризации по ионному механизму с получением полимерных материалов, подобных тем, которые получены в присутствии лития. В дальнейшем эти исследования были углублены в Италии в лаборатории Джулио Натта.
Отечественный промышленный полиизопрен, полученный на литиевых катализаторах, был назван СКИ, а полученный в присутствии каталитических систем Циглера-Натта был известен под аббревиатурой СКИ-3.
В 1956 г. был предложен метод получения стереорегулярных полибутадиеновых каучуков (СКД), которые по морозостойкости, устойчивости к истиранию превосходили резины, полученные из натурального каучука и СКИ-3.
Были получены полимеры на основе двойных сополимеров этилена и пропилена – СКЭПы (1955-1957). В этих каучуках отсутствуют двойные связи в структуре полимера, по этой причеине резины на их основе оказываются очень устойчивыми в агрессивных средах, вдобавок они прочны на истирание.
В 1960-е гг. был освоен промышленный выпуск каучуков СКД и СКИ-3 в Стерлитамаке, Тольятти, Волжске. В целом все эти предприятия использовали в качестве исходного сырья мономеры, полученные уже из нефти, а не из спирта.
Сополимеры бутадиена и изопрена начали быст­ро
и т.д.................

Происхождение полимеров

из "Полимеры"

Со времени образования Земли более 4 миллиардов лет назад в ее гигантской лаборатории такие элементы, как углерод, водород, кислород и азот, соединялись в сложные молекулы. В один прекрасный день это привело к возникновению самого загадочного и чудесного процесса, называемого жизнью, материальной основой происхождения которого был полимер. Этот полимер - белок - синтезирован в Природе из простых химических соединений метана, аммиака и углекислого газа. Так зародилась жизнь, и одна из ее форм в результате многовекового развития стала человеческой. Именно поэтому почти весь организм человека состоит из того же полимера. Таким образом, тесная связь Природы с полимерами длится уже несколько миллиардов лет (может, несколько миллионов лет больше или меньше, если Вы сторонник большой точности).
В то же самое время существовали и другие природные формы полимеров, такие, как древесина, хлопок, целлюлоза, крахмал и пр., которые впоследствии использовались человеком. Спросим себя, что же в конечном итоге является наиболее важной движущей силой человеческого развития И ответим инстинкт выживания. Даже миллионы лет назад основные потребности человека бьши те же, что и сейчас ему необходимы были кров и одежда и он должен был защищать себя. Шкуры животных были ему нужны, чтобы укрыть свое тело, листва и деревья - чтобы построить жилище, дубинки из дерева - как оружие. Таким образом он использовал природные полимеры.
Однако в ходе развития цивилизации люди изыскивали все новые и новые пути удовлетворения своих потребностей. Например, если раньше одежду изготавливали из шкур животных, то сейчас для этой цели применяют полиэфиры. Но и тогда, и сейчас человек использовал полимеры-или природные в виде шкур животных, или синтетические в виде найлонов и полиэфиров - не только для удовлетворения насущных потребностей, но и для своих прихотей.
Тем временем исследователи девятнадцатого века наталкивались на необъяснимые трудности при работе с определенными химическими веществами. Иногда реакции с такими веществами приводили к образованию клейких и вязких материалов, которые прилипали к стенкам пробирок и засоряли клапаны химической посуды. И только гениальность Лео Бакеланда помогла понять, что из этих склеившихся пробирок вырастет новая ветвь химии и что эти необычные материалы вскоре распахнут двери огромной технологической сокровищницы. В 1909 г. из двух обычных химических веществ (фенола и формальдегида) он создает смолу (названную позже в его честь бакелитом), способную формоваться в твердое негорючее изделие. Бакелит стал предшественником многих других современных синтетических полимеров. Например, в 1912 г. Жак Брандербур-гер изобрел знаменитый прозрачный материал - целлофан. Приблизительно в это же десятилетие из научных лабораторий всего света стали появляться все новые полимеры с постоянно улучшающимися свойствами.
Большинство синтетических полимеров имеет сравнительно недавнее происхождение. Действительно, они появились позже, чем радио и аэропланы, но зато как они изменили нашу жизнь. Имеем ли мы дело с модными галантерейными безделушками, тканями, строительными или упаковочными материалами, полимеры всегда находятся на переднем крае, предоставляя нам неограниченный выбор разнообразных изделий.
Очевидно, что полимеры не были открыты вдруг. Это плод упорных исследований множества энергичных ученых, чья работа так обогатила человеческую жизнь. Сегодня наще познание в области полимерной науки и технологии настолько глубоко, что ученый-экспериментатор может создать практически неограниченный круг новых материалов.
Как архитектор выбирает кирпичи, камни, бревна и т.д. разной формы, размеров и рисунка для создания различных проектов, так и химик получает бесчисленные пластмассы, каучуки, пенопласты, волокна и пр., варьируя различные химические соединения, реагирующие в определенных условиях. В качестве примера можно привести пуленепробиваемый полимер - поликарбонат, который сочетает прозрачность стекла с прочностью стали. В будущем мы вправе ожидать еще более невероятного соединения полезных свойств по мере того, как будут совершенствоваться навыки химика-полимерщика в архитектуре молекул.
Что такое полимеры С одной стороны, это сложные, гигантские молекулы, отличающиеся от низкомолекулярных веществ, таких, как обычная соль. Для того, чтобы проиллюстрировать это различие, скажем лишь, что молекулярный вес поваренной соли составляет всего 58,5, в то время как молекулярный вес полимера достигает нескольких сотен тысяч. Такие большие молекулы, или макромолекулы, состоят из большого числа небольших молекул. Эти небольшие молекулы, входящие в одну большую молекулу, могут быть как одинакового, так и разного химического состава. Проиллюстрируем это следующим наглядным примером. Представим себе набор колец одинакового размера, сделанных из одного материала. Будучи связанными между собой, они составляют цепочку, которую можно рассматривать как молекулу полимера, состоящую из молекул одного и того же химического вещества. Если взять кольца разных размеров, сделанные из различных материалов, то составленная из них цепочка моделирует полимер, построенный из молекул различных веществ Эти случаи представлены на рис. 1.1.
СОМ (54 X 4000) 200 ООО. Именно гигантские размеры полимерных молекул и являются причиной отличия их поведения от поведения общеизвестного химического вещества, например бензола. Твердый бензол при 5,5°С плавится и образуется жидкий бензол, а при дальнейщем нагревании начинает кипеть и образуется газообразный бензол. В отличие от поведения простого химического соединения полимер, например полиэтилен, не плавится при одной определенной температуре. Вместо этого он п сгепенно размягчается и, наконец, превращается в очень вязкую, клейкую расплавленную массу. Дальнейшее нагревание этого горячего вязкого полимерного расплава хотя и приводит к образованию различных газов, но эти газы уже полиэтиленом не являются (рис. 1.2).
1- добавление кристаллов хлорида натрия к воде 2 - кристаллы переходят В раствор, вязкость раствора почти не отлдаается от вязкости воды 3- образуется насыщенный раствор соли в воде, избыток кристаллов остается в нерастворенном состоянии.
Как мы уже ввдели, полимер состоит из большого числа маленьких молекул, которые, соединяясь, образуют одну длинную и большую молекулу. Отдельные маленькие молекулы, из которых образуется полимер, назьшаются мономерами (что означает - одна часть), а процесс, при котором молекулы мономеров соединяются между собой с образованием большой молекулы полимера, называется полимеризацией.
Проведем лишь одну аналогию для иллюстрации процесса полимеризации. Дети отдыхают на игровой площадке - некоторые сидят группами, некоторые - поодиночке. Вдруг появляется воспитатель и велит им построиться в ряд, и дети очень неохотно подчиняются ему. Однако он заставляет их взяться за руки и образовать длинную цепочку. Теперь возникает следующая проблема. Дети начинают шалить, и некоторые из них отказываются протянуть свою левую ручку соседу. Что же в этом случае произойдет с цепочкой Естественно, что на непослушном мальчике ряд будет заканчиваться, ведь он не дает руки своему соседу, и цепочка разрывается.
обе ручки ребенка, необходимые для того, чтобы цепочка продолжала расти с обеих сторон, представляют собой два реакционных центра мономера, которые нужны для соединения мономерных молекул, роста и образования огромной молекулы полимера. Следует отметить, что наличие двух реакционных центров мономера (так называемая бифункциональность) является необходимым условием роста полимерной цепи, так же как для роста цепочки, составленной детьми, необходимо, чтобы каждый ребенок протянул обе ручки.
Ранее мы установлии, что полимеризация может протекать с участием либо одного, либо нескольких мономеров. Если молекулы мономера присоединяются друг к другу с образованием полимера, то этот процесс называется полимеризацией присоединения. Мономерные звенья в этом случае сохраняют свою индивидуальность и в полимере. Например, мономерные молекулы этилена присоединяются друг к другу с образованием полиэтилена, в котором сохраняется структурная идентичность этилена.
Как при полимеризации, так и при поликонденсации образующая молекула полимера содержит одну структурную единицу, повторяющуюся многократно. Эти повторяющиеся единицы называют мономерными звеньями. Размер полимерной молекулы определяется числом повторяющихся единиц, количество которых является степенью полимеризации.
Например, пять молекул мономера этилена присоединяются друг к другу с образованием молекулы полиэтилена (рис. 1.4, верхняя часть). В данном случае повторяющаяся единица (Hj -СН2) и молекула полимера состоит из пяти таких повторяющихся единиц. Следовательно, степень полимеризации равна 5. Аналогично этому если четыре молекулы гидрокислоты (НО-R-СООН) конденсируются, то образуется молекула полиэфира. Повторяющаяся единица в этом случае -R-СОО- (см. рис. 1.4, нижняя часть). Данная молекула полиэфира имеет четыре повторяющихся звена, и, следовательно, степень ее полимеризации равна 4.
Полимер - это общее название, данное широкому кругу материалов, обладающих высоким молекулярным весом. Эти материалы существуют в самых разнообразных формах и видах, так как в их молекулах присутствует большое число различных типов атомов. Полимеры могут иметь различные химические структуры, физические свойства, механическое поведение, термические характеристики и пр. и могут быть классифицированы различным образом.
В зависимости от своего происхождения полимеры бывают природные или синтетические. Природными называют полимеры, полученные из натуральных материалов. Типичными примерами являются хлопок, шелк, шерсть, каучук. Целлофан, вискозное волокно, кожа и т.д. представляют собой химическую модификацию природных полимеров.
Полимеры, синтезированные из низкомолекулярных веществ, называют синтетическими полимерами. Типичными примерами являются полиэтилен (ПЭ), поливинилхлорид (ПВХ), полиамид (ПА, найлон) и лавсан.