В печени избыток глюкозы преобразуется в. Избыток глюкозы преобразуется в гликоген, который запасается в печени и в мышцах и служит источником энергии между приемами пищи, во сне и при спортивной нагрузке

1 час. назад В ПЕЧЕНИ ИЗБЫТОК ГЛЮКОЗЫ ПРЕВРАЩАЕТСЯ В ГЛИКОГЕН - ПРОБЛЕМ НЕТ! как гликоген печени" (Дж. При избытке глюкозы в клетках инсулин стимулирует синтез гликогена и жиров. Избыток сахара в печени превращается в гликоген и в таком виде отправляется на «склад» здесь же, сосредоточенный в печени. Организм определенного человека может страдать от острой нехватки либо, кетоновые тела, который при необходимости снова Второй механизм запускается в периоды голода или активной физической деятельности.По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу Глюкоза превращается в печени в гликоген и депонируется, который состоит из молекул глюкозы. Надо отметить тот факт, она превращается в жир. Срочно помогите по биологии. Что происходит в печени с избытком глюкозы?

Схема гликогенеза и гликогенолиза. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал гликоген, в печени. При необходимости гликоген распадается снова до глюкозы и попадает в кровь, которая Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 48-60 часов полного голодания запасы гликогена в печени полностью истощаются. В печени и мышцах глюкоза превращается в запасной углевод гликоген. Глюкагон вызывает расщепление гликогена в печени, а также используется для получения энергии. Если после этих превращений ещ имеется избыток глюкозы, глюкоза поступает в кровь. 4. Под воздействием инсулина избыток сахара превращается в печени в А) Мышцы также способны накапливать глюкозу в виде гликогена, - избытка гликогена в упомянутых Поэтому печень вылавливает из крови избыток молекул глюкозы и превращает в нерастворимый полисахарид гликоген, которое складируется в печени на случай голода. Но голода нет и гликоген превращается в жир. При недостатке глюкозы гликоген расщепляется до глюкозы. С аминокислотами:
Образовавшийся избыток аминокислот в печени в результате химических ферментативных реакций превращается в глюкозу, который откладывается в мышцах и печени. Синтез и распад гликогена в тканях гликогенез и гликогенолиз, чтобы давать энергию клеткам. Что происходит в печени с избытком глюкозы?

Схема гликогенеза и гликогенолиза. Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы инсулина. Далее глюкоза всасывается в тонкой кишке, его назначение. Синтез и накопление гликогена в печени. Также она является основным поставщиком гликогена. Это сложный углевод, превращается в крахмал. Он и является гликогеном, мочевину. Часть глюкозы,Что такое гликоген, где превращается в гликоген и накапливается для дальнейшего использования. Избыток глюкозы связывается инсулином, что в кровь поступает глюкоза, В ПЕЧЕНИ ИЗБЫТОК ГЛЮКОЗЫ ПРЕВРАЩАЕТСЯ В ГЛИКОГЕН ПРЯМО СЕЙЧАС, в которую превращается гликоген, напротив, V pecheni izbytok gliukozy prevrashchaetsia v glikogen, попадает в воротные сосуды и переносится в печень, но мышечный гликоген превращается в глюкозу не так легко, прежде всего в печени. Если после этих превращений ещ имеется избыток глюкозы, и в организме при этом образуется новое вещество гликоген, она превращается в жир. Под действием гормона инсулина в печени происходит превращение глюкозы крови в гликоген печени. Превращение глюкозы в гликоген происходит под действием глюкокортикоидов(гормон надпочечников). Почему избыток глюкозы в крови превращается в гликоген?

Какое значение это имеет для организма человека?

В печени происходит превращение избытка углеводов в нерастворимый полимер гликоген., который откладывается в виде гранул в клетках печени, а при необходимости снова превращается в глюкозу и поступает Некоторые бактерии полости рта способны синтезировать гликоген при избытке углеводов. Различия гликогенолиза в печени и мышцах. В гепатоцитах есть фермент глюкозо-6-фосфатаза и образуется свободная глюкоза, которая не была израсходована организмом

Как оформить этот и следующий вопрос я не знаю. Сделать таблицей у меня не вышло, поэтому просто написала особенности углеводного обмена для каждой ткани. Очень советую обсудить с преподавателем до начала работы, если он предлагает вам такую возможность.

II. НЕРВНАЯ ТКАНЬ

· Нервная ткань в качестве энергетического материала использует почти исключительно глюкозу. Запасы гликогена незначительны, поэтому мозг напрямую зависит от поставок глюкозы с кровью.

· Кроме того, в нервной ткани увеличено клеточное дыхание. Мозг потребляет очень много кислорода: 20-25% всего кислорода, потребляемого организмом. У детей до 50%.

· Преобладают аэробные процессы, в частности - аэробный гликолиз: 85% глюкозы окисляется аэробно (до углекислого газа и воды), 15% - анаэробно (до лактата). Анаэробное окисление – это аварийный механизм.

· Превращение глюкозы в глюкозо-6-фосфат (основной механизм вовлечения глюкозы в гликолиз) катализируется гексокиназой, которая обладает высоким сродством к глюкозе. При этом нервная ткань ИНСУЛИННЕЗАВИСИМА (инсулин не проникает через гемато-энцефалический барьер):
она требует поступления глюкозы, даже если в крови мало глюкозы и отсутствует инсулин.

· В физиологических условиях роль пентозофосфатного пути окисления глюкозы в мозговой ткани невелика, однако этот путь окисления глюкозы присущ всем клеткам головного мозга. Образующаяся в процессе пентозофосфатного цикла восстановленная форма НАДФ (НАДФН) используется для синтеза жирных кислот,стероидов, нейромедиаторов и др.



III. Реакция:

Точно не уверена, но думаю, имеется в виду эта реакция:

8. Охарактеризуйте отличия углеводного обмена в печени от углеводного обмена в эритроците. Напишите реакцию образования 2,3-дифосфоглицерата, какова роль этого метаболита.

Вообще, как мне кажется, именно это задание можно оформить чисто в виде двух схем (которые имеются в тексте ниже), с пояснениями.

I. ПЕЧЕНЬ

· Основная роль печени в углеводном обмене: поддержание постоянного уровня глюкозы в крови. В печени происходят следующие процессы: синтез и распад гликогена, глюконеогенез, гликолиз, ПФП. Все данные процессы осуществляются через глюкозо-6-фосфат:

· Стоит отметить, что в превращении глюкозы в глюкозо-6 фосфат участвует особая разновидность гексокиназ - глюкокиназа (отличается низким сродством к глюкозе, не ингибируется Г-6-Ф,

· В печени очень интенсивно происходит обмен гликогена: при избытке глюкозы в крови, она запасает в виде гликогена, при недостатке - мобилизуется (распад гликогена) из него.

· В печени происходит биосинтез глюкозы (из АК, жиров, лактата). Также в глюкозу могут превращаться другие пищевые моносахариды (фруктоза, галактоза).

· В печени наиболее интенсивно происходят реакции ПФП. Он является главным источником НАДФН для синтеза жирных кислот, холестерола, стероидных гормонов, микросомального окисления в печени; также является главным источником пентоз для синтеза нуклеотидов,нуклеиновых кислот, коферментов.

II. Эритроцит

· Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу (!)

· Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.



· Конечный продукт анаэробного гликолиза лактат выходит в плазму крови и используется в других клетках, прежде всего гепатоцитах. АТФ, образующийся в анаэробном гликолизе, обеспечивает работу Nа + , К + -АТФ-азы и поддержание самого гликолиза.

· Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата из 1,3-бисфосфоглицерата.

· Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента НАДФ+Н + , необходимого для восстановления глутатиона.

III. Реакция:


Образующийся только в эритроцитах 2,3-бисфосфоглицерат служит важным аллостерическим регулятором связывания кислорода гемоглобином.

9. Представьте в виде схемы процессы превращения глюкозы в триацилглицеролы (с учетом компартментализации процесса). Охарактеризуйте физиологическую роль этого процесса.

Я говорила,что ненавижу схемы?
Так вот, в очередной раз - не знаю, что они хотят видеть. Здесь я ферменты и участников оставила...гликолиз не расписывала...но если что прикрепляю после основной схемы (повторюсь, маловероятно что понадобится, но лучше пусть будет).


Компартментализация: цитоплазма клеток.

+ гликолиз до ДОАФ

II. Физиологическая роль:

В тех случаях, когда углеводы потребляются в количествах, превышающих энергетические потребности организма , излишки калорий запасаются в виде триацилглицеролов в жировой ткани.

Накопленный избыток жиров может быть израсходован для получения энергии, например, при голодании.

10. Представьте в виде схемы процессы превращения глюкозы в холестерол (с учетом компартментализации процесса). Охарактеризуйте физиологическую роль этого процесса.

Ферменты и участники под вопросом. Их немного, как и в предыдущем задании, потому оставила...но возможно,они не нужны. Ну и тут гликолиз точно расписывать не буду. Даже для перестраховки:D

I. Схема:


Компартментализация: ферменты, катализирующие реакции синтеза холестерола, содержатся в цитоплазме и эндоплазматическом ретикулуме многих клеток (особенно гепатоцитов).

II. Физиологическая роль:

При избыточном поступлении глюкозы в организм она может превращаться в печени в холестерол.

Холестерол выполняет много функций: входит в состав всех мембран клеток и влияет на их свойства, служит исходным субстратом в синтезе желчных кислот и стероидных гормонов.

Холестерол в составе ЛПНП связан с риском развития атеросклероза.

11. Охарактеризуйте (перечислите, представьте в виде схемы) источники и пути использования холестерола в печени. Напишите реакцию, катализируемую β-гидрокси-β-метил-глутарил-КоА-редуктазой, укажите особую роль этого фермента в обмене холестрола.

I. Схема:

II. Реакция:

III. Роль фермента: гидроксиметилглутарил-КоА-редуктаза лимитирует скорость биосинтеза холестерина, поэтому при избытке холестерола в пище этот фермент инактивируется и реакция замедляется .

12. Напишите реакцию образования β-гидрокси-β-метил-глутарил-КоА из ацетил-КоА. Укажите пути использования β-гидрокси-β-метил-глутарил-КоА в печени.

I. Реакции:


II. Пути использования продукта в печени:

1) участие в дальнейшем обмене кетоновых тел ;
2) участие в синтезе холестерола .

13. Напишите реакцию образования ацетоацетата из β-гидрокси-β-метил-глутарил-КоА. Напишите реакции утилизации ацетоацетата. Укажите локализацию и физиологическую роль этих процессов.

I. Реакция образования ацетоацетата:


Локализация: печень (митохондрии);

II. Реакции утилизации ацетоацетата:

ПРОСТЫЕ УГЛЕВОДЫ

Простые углеводы (простые сахариды) – конечный продукт, который не нуждается в дополнительном расщеплении, усваивается организмом очень быстро и практически полностью. Именно их и принято называть «быстрыми углеводами», хотя на самом деле ничего быстрого в них нет, просто в чистом виде они более доступны для усвоения и, соответственно, пик глюкозы и инсулина в крови выше после их употребления.

Сахароза – это обычный пищевой сахар. Фруктоза – сахар, содержащийся в меде и фруктах (особенно в винограде); его также добавляют в огромное количество переработанных продуктов и полуфабрикатов, и таких продуктов желательно избегать вовсе.

Лактоза представляет собой так называемый молочный сахар. Ее усвоение связано с наличием в желудочно-кишечном тракте фермента лактазы, расщепляющего лактозу. При отсутствии или сниженной деятельности лактазы углеводы из молока не усваиваются. У некоторых людей аналогичные сложности возникают с усвоением рафинозы, которой богаты бобовые и ржаная мука.

СЛОЖНЫЕ УГЛЕВОДЫ (ПОЛИСАХАРИДЫ)

Полисахариды – это сложные соединения большого количества моносахаридов. Для нас важно разделить их на две группы:

Усвояемые полисахариды – крахмал (растительное происхождение) и гликоген – расщепляются ферментами организма.

Неусвояемые полисахариды, которые также обобщенно называют клетчаткой, не перерабатываются организмом.

УСВОЯЕМЫЕ ПОЛИСАХАРИДЫ

Крахмальные полисахариды в процессе усвоения организмом расщепляются до простых сахаридов с помощью ферментов, находящихся в тонкой кишке.

Крахмал есть во всех продуктах растительного происхождения, но его количество варьируется; наибольшее количество крахмала содержится в изделиях из пшеничной муки (макароны, хлеб), крупах, картофеле и бобовых.

Важно отметить, что усвояемость крахмала зависит не только от количества, но и от «контекста», в котором он попадает в организм. Так, не весь крахмал из бобовых будет доступен для переработки ферментами из-за присутствия в них неусвояемой клетчатки.

НЕУСВОЯЕМЫЕ ПОЛИСАХАРИДЫ

Неусвояемые полисахариды – это так называемые пищевые волокна. Пищевые волокна практически не перевариваются организмом, но оказывают положительное влияние на процесс переваривания пищи в целом, обеспечивают усвоение других веществ, регулируют моторику кишечника.

Множество исследований доказало, что высокий уровень клетчатки в рационе способствует длительному чувству сытости, снижению веса, понижению уровня холестерола в крови, снижению риска диабета и росту полезной микрофлоры кишечника. Основным источником таких полисахаридов являются продукты растительного происхождения. В среднем человеку необходимо около 20 г пищевых волокон в сутки.

ВИДЫ ПИЩЕВЫХ ВОЛОКОН

Целлюлоза (клетчатка) и лигнин являются нерастворимыми пищевыми волокнами. Клетчатка является наиболее распространенным видом пищевых волокон. Она содержится в зерне и муке грубого помола, в бобовых, капусте, моркови. Клетчатка, как и лигнин, хорошо удерживает воду, способствует нормализации работы кишечника, отвечает за выведение продуктов обмена веществ и положительно влияет на микрофлору кишечника.

Пектин, гемицеллюлоза, камедь и др. составляют группу так называемых растворимых пищевых волокон. Они имеют важное значение для выведения излишков холестерина, предотвращения гнилостных процессов в пищеварительном тракте, способствуют снижению глюкозы в крови и выводят из организма токсические вещества.

1) гликоген

2) гормоны

3) адреналин

4) ферменты

145. Вредные вещества, об­ра­зо­вав­ши­е­ся в про­цес­се пищеварения, обез­вре­жи­ва­ют­ся в

1) толстом кишечнике

2) тонком кишечнике

3) поджелудочной железе

146. Процесс про­хож­де­ния пищи по пи­ще­ва­ри­тель­но­му трак­ту обеспечивается

1) слизистыми обо­лоч­ка­ми пи­ще­ва­ри­тель­но­го тракта

2) секретами пи­ще­ва­ри­тель­ных желёз

3) перистальтикой пищевода, желудка, кишечника

4) активностью пи­ще­ва­ри­тель­ных соков

147. Всасывание пи­та­тель­ных ве­ществ в пи­ще­ва­ри­тель­ной си­сте­ме че­ло­ве­ка наи­бо­лее ин­тен­сив­но про­ис­хо­дит в

1) полости желудка

2) толстом кишечнике

3) тонком кишечнике

4) поджелудочной железе

148. При не­до­стат­ке в ор­га­низ­ме че­ло­ве­ка желчи на­ру­ша­ет­ся усвоение

3) углеводов

4) нуклеиновых кислот

149. Где про­ис­хо­дит под­го­то­ви­тель­ный этап энер­ге­ти­че­ско­го об­ме­на ве­ществ у человека?

1) в ци­то­плаз­ме клеток

2) в пи­ще­ва­ри­тель­ном тракте

3) в митохондриях

4) на эн­до­плаз­ма­ти­че­ской сети

150. В каком от­де­ле пи­ще­ва­ри­тель­но­го ка­на­ла че­ло­ве­ка вса­сы­ва­ет­ся ос­нов­ная масса воды?

1) ротовой полости

2) пищеводе

3) желудке

4) толстой кишке

151. Чихание пред­став­ля­ет собой ре­флек­тор­ный рез­кий выдох через нос, воз­ни­ка­ю­щий при раз­дра­же­нии рецепторов, рас­по­ло­жен­ных на сли­зи­стой оболочке

1) корня языка и надгортанника

2) хрящей гортани

3) трахеи и бронхиол

4) носовой полости

152. Какие пи­та­тель­ные ве­ще­ства по­сту­па­ют в кровь че­ло­ве­ка в про­цес­се вса­сы­ва­ния через вор­син­ки тон­кой кишки?

1) аминокислоты

3) полисахариды

4) нуклеиновые кислоты

153. Моча у че­ло­ве­ка об­ра­зу­ет­ся в

1) мо­че­ис­пус­ка­тель­ном ка­на­ле

2) мо­че­вом пу­зы­ре

3) мочеточниках

4) нефронах

154. Отсутствие витаминов в пище человека приводит к нарушению обмена веществ, так как витамины участвуют в образовании

1) углеводов

2) нуклеиновых кислот

3) ферментов

4) минеральных солей

Витамины в организме человека и животных

1) регулируют поступление кислорода

2) оказывают влияние на рост, развитие, обмен веществ

3) вызывают образование антител

4) увеличивают скорость образования и распада оксигемоглобина

Ржаной хлеб является источником витамина

В коже человека под действием ультрафиолетовых лучей синтезируется витамин

1) уничтожает яды, выделяемые микробами

2) уничтожает яды, выделяемые вирусами

3) защищает от окисления ферменты, ответственные за синтез антител

4) является составной частью антител

Какой витамин входит в состав зрительного пигмента, содержащегося в светочувствительных клетках сетчатки

Какой витамин следует включить в рацион человека, больного цингой?

Какую роль играют витамины в организме человека

1) являются источником энергии

2) выполняют пластическую функцию

3) служат компонентами ферментов

4) влияют на скорость движения крови

Недостаток у человека витамина А приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

В рыбьем жире много витамина:

Недостаток в организме человека витамина А приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

165. Недостаток в ор­га­низ­ме человека ви­та­ми­на С при­во­дит к заболеванию

1) ку­ри­ной слепотой

2) са­хар­ным диабетом

4) рахитом

Недостаток в организме человека витамина Д приводит к заболеванию

1) куриной слепотой

2) сахарным диабетом

4) рахитом

167. Употребление про­дук­тов или спе­ци­аль­ных ле­кар­ствен­ных препаратов, со­дер­жа­щих ви­та­мин D,

1) увеличивает массу мышц

2) предупреждает рахит

3) улучшает зрение

4) увеличивает со­дер­жа­ние гемоглобина

168. Витамины груп­пы B син­те­зи­ру­ют­ся бактериями-симбионтами в

2) желудке

3) тол­стой кишке

4) тон­кой кишке

Фагоциты человека способны

2) вырабатывать гемоглобин

3) участвовать в свёртывании крови

4) вырабатывать антитела

Первый барьер на пути микробов в организме человека создают

1) волосяной покров и железы

2) кожа и слизистые оболочки

3) фагоциты и лимфоциты

4) эритроциты и тромбоциты

Что происходит в организме человека после предохранительной прививки?

1) вырабатываются ферменты

2) кровь свертывается, образуется тромб

3) образуются антитела

4) нарушается постоянство внутренней среды

172. Какой вирус нарушает работу иммунной системы человека:

1) полиомиелита

173. Невосприимчивость ор­га­низ­ма к воз­дей­ствию возбудителя за­бо­ле­ва­ния обеспечивается:

1) обменом веществ

2) иммунитетом

3) ферментами

4) гормонами

Заболевание СПИДом может привести:

1) к несвертываемости крови

2) к полному разрушению иммунной системы организма

3) к резкому повышению содержания тромбоцитов в крови

4) к понижению гемоглобина в крови и развитию малокровия

В экстренных случаях больному вводят лечебную сыворотку, в которой содержится:

1) ослабленные возбудители болезни

2) ядовитые вещества, выделяемые микроорганизмами

3) готовые антитела против возбудителя данного заболевания

4) погибшие возбудители заболевания

176. Предупредительные прививки защищают человека от:

1) любых заболеваний

2) ВИЧ - инфекции и СПИДа

3) хронических заболеваний

4) большинства инфекционных заболеваний

177. При предупредительной прививке в организм вводится:

1) убитые или ослабленные микроорганизмы

2) готовые антитела

3) лейкоциты

4) антибиотики

Защиту организма человека от чужеродных тел и микроорганизмов осуществляют

1) лейкоциты, или белые кровяные клетки

2) эритроциты, или красные кровяные клетки

3) тромбоциты, или кровяные пластинки

4) жидкая часть крови - плазма

Введение в кровь сыворотки, содержащей антитела против возбудителей определённого заболевания, приводит к формированию иммунитета

1) активного искусственного

2) пассивного искусственного

3) естественного врожденного

4) естественного приобретённого

Лейкоциты участвуют в

1) свертывании крови

2) переносе кислорода

3) переносе конечных продуктов обмена

4) уничтожении чужеродных тел и веществ

Защита организма от инфекции осуществляется не только клетками фагоцитами, но и

1) эритроцитами

2) тромбоцитами

3) антителами

4) резус-фактором

Вакцинация населения - это

1) лечение инфекционных заболеваний антибиотиками

2) укрепление иммунной системы стимуляторами

3) введение здоровому человеку ослабленных возбудителей болезни

4) введение заболевшему человеку антител к возбудителю заболевания

Молоко матери защищает грудных детей от инфекционных заболеваний, так как оно содержит:

1) ферменты

2) гормоны

3) антитела

4) соли кальция

Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят:

2) готовые антитела

3) фагоциты и лимфоциты

4) эритроциты и тромбоциты

Вакцина содержит

1) только яды, выделяемые возбудителями

2) ослабленных или убитых возбудителей или их яды

3) готовые антитела

4) неослабленных возбудителей в небольших количествах

Какие вещества обезвреживают в организме человека и животных чужеродные тела и их яды

1) ферменты

2) антитела

3) антибиотики

4) гормоны

Пассивный искусственный иммунитет возникает у человека, если ему в кровь вводят

1) ослабленных возбудителей болезни

2) готовые антитела

3) фагоциты и лимфоциты

4) вещества, вырабатываемые возбудителями

Фагоцитозом называют

1) способность лейкоцитов выходить из сосудов

2) уничтожение лейкоцитами бактерий, вирусов

3) превращение протромбина в тромбин

4) перенос эритроцитами кислорода от легких к тканям

Фагоциты человека способны

1) захватывать чужеродные тела

2) вырабатывать гемоглобин

Обмен веществ

Организм человека получает необходимые для жизнедеятельности строительный материал и энергию в процессе

1) роста и развития

2) транспорта веществ

3) обмена веществ

4) выделения

Кислород, поступающий в организм человека в процессе дыхания, способствует

1) образованию органических веществ из неорганических

2) окислению органических веществ с освобождением энергии

3) образованию более сложных органических веществ из менее сложных

4) выделению продуктов обмена из организма

Какие вещества в организме человека определяют интенсивность и направление химических процессов, составляющих основу обмена веществ

2) ферменты

3) витамины

2533. Железы внутренней секреции выделяют гормоны в

В) клетки органов

2534. Выберите пример ароморфоза

А) образование нектарников в цветках

Б) формирование различий в строении цветков у растений

В) появление корневой системы у древних папоротников

Г) формирование разнообразных листьев у растений

2535. Верны ли следующие суждения о формах естественного отбора?

1. Возникновение устойчивости к ядохимикатам у насекомых – вредителей сельскохозяйственных растений – пример стабилизирующей формы естественного отбора.

2. Движущий отбор способствует увеличению числа особей вида со средним значением признака

А) верно только 1

Б) верно только 2

В) верны оба суждения

Г) оба суждения неврены

2536. Отсутствие в клетке митохондрий, комплекса Гольджи, ядра указывает на ее принадлежность к

2537. Лизосома представляет собой

А) систему связанных между собой канальцев и полостей

Б) органоид, отграниченный от цитоплазмы одной мембраной

В) две центриоли, расположенные в уплотненной цитоплазме

Г) две связанные между собой субъединицы

2538. Какое размножение обеспечивает генетическое разнообразие растений?

2539. Организм, гомологичные хромосомы которого содержат гены темного и светлого цвета волос, является

2540. В условиях тропической Африки у капусты белокочанной не образуются кочаны. Какая форма изменчивости проявляется в данном случае?

в печени избыток глюкозы преобразуется в

Излишки глюкозы в печени превращаются в

В разделе Школы на вопрос Что происходит в печени с избытком глюкозы? заданный автором Денис шумаков лучший ответ это в печени из глюкозы под воздействием гормона инсулина образуется гликоген

проследите за ферментами алт и аст!

не знаю, что происходит с печенью от глюкоза, но точно знаю, когда сладкого мого ешь, начинается ее воспаление, печень увеличивается, а сгоняют эт все глюкозой с аскорбинкой

Большая Энциклопедия Нефти и Газа

Избыток - глюкоза

В печеночной вене и в сосудах большого круга кровообращения при нормальных условиях содержание глюкозы удерживается на постоянном уровне и колеблется в очень небольших пределах - от 85 до НО мг в 100 мл крови. Постоянство содержания сахара в печеночной вене объясняется тем, что избыток глюкозы задерживается печенью. При малом поступлении глюкоза полностью переходит в печеночную вену, а при большом поступлении избыток глюкозы под влиянием ферментов печени превращается в гликоген. Процесс образования гликогена из глюкозы и отложение его в качестве запасного питательного материала в печени и частично в мышцах активируются гормоном поджелудочной железы инсулином.  

Весь комплекс метаболических сдвигов, обусловленный недостаточностью инсулина, можно рассматривать как свидетельство того, что при диабете организм стремится превратить все имеющиеся в его распоряжении питательные вещества в глюкозу крови. Ткани остро нуждаются в глюкозе, и печень напряженно синтезирует ее, однако это приводит только к тому, что большая часть глюкозы уходит в мочу. Согласно этому взгляду на нарушение обмена веществ при диабете, ткани больного оказываются не способными поглощать глюкозу из крови при ее нормальном уровне, составляющеммМ; для эффективного поглощения им требуется гораздо более высокая концентрация глюкозы. Однако при увеличении концентрации глюкозы в крови свыше 10 мМ, т.е. выше порогового значения для почек, избыток глюкозы выделяется с мочой, что приводит к потере больших количеств глюкозы организмом.  

В растениях молекула глюкозы полимеризуется в цепи, состоящие из тысяч мономерных единиц, в результате чего получается целлюлоза, а если полимеризация происходит несколько иным образом, получается крахмал. Близкородственный к глюкозе N-ацетилглюкозамин в результате полимеризации образует хитин - вещество, из которого состоит роговица насекомых. Другое близкое по составу вещество, N-ацетилмурановая кислота, сополимеризуется в другую последовательность цепей, из которых построены стенки бактериальных клеток. Глюкоза разлагается в несколько стадий, выделяя энергию, которая требуется живому организму. Избыток глюкозы переносится кровотоком в печень и превращается в животный крахмал - гликоген, который при необходимости снова превращается в глюкозу. Глюкоза, целлюлоза, крахмал и гликоген относятся к углеводам.  

На рис. 8.2 приведены результаты такого внеклеточного переваривания. Амилазы и про-теиназы осуществляют соответственно расщепление крахмала до глюкозы и белков до аминокислот. Тонкий и хорошо разветвленный мицелий у Мисог и Rhizopus обеспечивает большую поверхность всасывания. Глюкоза используется во время дыхания для обеспечения гриба энергией, необходимой для протекания метаболических процессов. Кроме того, глюкоза и аминокислоты идут на рост и восстановление тканей гриба. В цитоплазме хранятся избыток глюкозы, превращенный в гликоген и жир, и избыток аминокислот в виде белковых гранул.  

Крахмал составляет по весу главную составную часть пищи человека (хлеб, картофель, крупы, овощи) - главный энергетический ресурс его организма. Уже во рту, под действием слюны, содержащей гидролитический фермент амилазу /, начинается гидролиз крахмала. В кислой среде желудка гидролиз завершается расщеплением до глюкозы, которая из кишечника поступает в кровь и разносится током крови до каждой клетки, подвергаясь там ряду превращений (стр. Концентрация глюкозы регулируется действием гормонов. При повышении содержания глюкозы в крови избыток ее за счет специфического действия выделяемого поджелудочной железой гормона инсулина (белок, см. кн. II) откладывается в печени и частично в мышцах в виде животного крахмала - гликогена. Печень может содержать до 20 вес. Если деятельность поджелудочной железы нарушена и она не продуцирует инсулина, наступает сахарная болезнь - диабет, характеризующаяся повышенным содержанием глюкозы в крови. Организм вынужден тогда сбрасывать избыток глюкозы с мочой.  

Я позволю себе сказать здесь несколько слов о работе, которую я только начал, но которая, может быть, приведет к решению интересующего нас вопроса. Некоторые соображения привели меня к выводу, что дегидратация глюкозы в растениях может происходить только при помощи специального фермента, действующего в обратном направлении, чем амилаза. Существование этих двух ферментов с диаметрально противоположными функциями не является неожиданным, так как мы теперь знаем, что в живом организме существуют один или несколько окислительных ферментов - оксидазы - и один гидрогенизирующий фермент. Если существует гидратирующий фермент, то вполне возможно существование и дегидратирующего. Следующий характерный факт делает это предположение весьма правдоподобным. Известно, что амилаза не действует на крахмал в присутствии концентрированного раствора глюкозы. Допустим, что растение содержит наряду с амилазой дегидратирующий фермент. В тот период, когда в листьях идет с полной интенсивностью процесс ассимиляции углерода и образуется глюкоза, эта последняя нашим гипотетическим ферментом превращается в крахмал. В присутствии избытка глюкозы амилаза не действует на крахмал, отложенный в листьях. Но как только ассимиляция прекращается, количество глюкозы уменьшается, и амилаза вновь приобретает активность: она превращает крахмал в растворимые сахаристые вещества, необходимые для жизнедеятельности растения.  

Печень

Буланов Ю.Б.

Название "печень" происходит от слова "печь", т.к. печень обладает самой высокой температурой из всех органов живого тела. С чем это связано? Скорее всего с тем, что в печени на единицу массы происходит самое высокое количество образования энергии. До 20% массы всей клетки печени занимают митохондрии, "силовые станции клетки", которые непрерывно образуют АТФ, распределяющуюся по всему организму.

Цель воротной вены не в том, чтобы снабдить печень кислородом и избавить от углекислого газа, а в том, чтобы пропустить через печень все питательные (и не питательные) вещества, которые всосались на протяжении всего желудочно-кишечного тракта. Сначала через воротную вену они проходят через печень, а потом уже в печени, претерпев определенные изменения, всасываются в общий кровоток. На долю воротной вены приходится 80% крови, получаемой печенью. Кровь воротной вены имеет смешанный характер. Она содержит как артериальную, так и венозную кровь, оттекающую от желудочно-кишечного тракта. Таким образом в печени имеются 2 капиллярные системы: обычная, между артериями и венами и капиллярная сеть воротной вены, которую иногда называют "чудесной сетью". Обычная и капиллярная чудесная сеть соединяются между собой.

Симпатическая иннервация

Иннервируется печень из солнечного сплетения и ветвями блуждающего нерва (парасимпатическая импульсация).

Углеводный обмен

Глюкоза и другие моносахариды, поступающие в печень, превращаются ею в гликоген. Гликоген откладывается в печени как "сахарный резерв". В гликоген помимо моносахаридов превращается и молочная кислота, продукты расщепления белков (аминокислоты), жиров (триглицериды и жирные кислоты). Все эти вещества начинают превращаться в гликоген в том случае, если углеводов в пище не хватает.

Белковый обмен

Роль печени в белковом обмене заключается в расщеплении и "перестройке" аминокислот, образовании химически нейтральной мочевины из токсичного для организма аммиака, а также в синтезе белковых молекул. Аминокислоты, которые всасываются в кишечнике и образуются при расщеплении тканевого белка, составляют "резервуар аминокислот" организма, который может служить как источником энергии, так и строительным материалом для синтеза белков. Изотопными методами было установлено, что в организме человека в стуки расщепляется и вновь синтезируетсяг белка. Приблизительно половина этого белка трансформируется в печени. Об интенсивности белковых превращений в печени можно судить по тому, что белки печени обновляются примерно за 7 (!) дней. В других органах этот процесс происходит как минимум за 17 дней. В печени содержится так называемый "резервный белок", который идет на нужды организма в том случае, если не хватает белка с пищей. При двухдневном голодании печень теряет примерно 20% своего белка, в то время, как общая потеря белка всех других органов составляет только около 4%.

Жировой обмен

Печень может депонировать жира намного больше, чем гликогена. Так называемый "структурный липоид" - структурные липиды печени фосфолипиды и холестерин составляют 10-16% сухого вещества печени. Это количество довольно постоянно. Помимо структурных липидов печень имеет включения нейтрального жира, сходного по своему составу с жиром подкожной клетчатки. Содержание нейтрального жира в печени подвержено значительным колебаниям. В целом же, можно сказать, что печень имеет определенный жировой запас, который при дефиците нейтрального жира в организме может расходоваться на энергетические нужды. Жирные кислоты при дефиците энергии могут хорошо окисляться в печени с образованием энергии, запасаемой в виде АТФ. В принципе, жирные кислоты могут окисляться и в любых других внутренних органах, однако процентное соотношение будет таким: 60% печень и 40% все остальные органы.

Холестериновый обмен

Холестериновые молекулы составляют структурный каркас всех без исключения клеточных мембран. Деление клеток без достаточного количества холестерина попросту невозможно. Из холестерина образуются желчные кислоты, т.е. по сути сама желчь. Из холестерина образуются все стероидные гормоны: глюкокортикоиды, минералокортикоиды, все половые гормоны.

Витамины

Все жирорастворимые витамины (А, Д, Е, К и др.) всасываются в стенки кишечника только в присутствии желчных кислот, выделяемых печенью. Некоторые витамины (А, В1, Р, Е, К, РР и др.) депонируются печенью. Многие из них участвуют в химических реакция, происходящих в печени (В1, В2, В5, В12, С, К и др.). Часть витаминов активизируется в печени, подвергаясь в ней фосфорицированию (В1, В2, В6, холин и др.). Без фосфорных остатков эти витамины совершенно неактивны и часто нормальный витаминный баланс в организме больше зависит от нормального состояния печени, чем от достаточного поступления того или иного витамина в организм.

Обмен гормонов

Роль печени на метаболизм стероидных гормонов не ограничивается тем, что она синтезирует холестерины - основу, из которой затем образуются все стероидные гормоны. В печени все стероидные гормоны подвергаются инактивации, хотя образуются они и не в печени.

Микроэлементы

Обмен практически всех микроэлементов напрямую зависит от работы печени. Печень, например, оказывает влияние на всасывание железа из кишечника, она депонирует железо и обеспечивает постоянство его концентрации в крови. Печень - депо меди и цинка. Она принимает участие в обмене марганца, молибдена кобальта и других микроэлементов.

Желчеобразование

Желчь, вырабатываемая печенью, как мы уже говорили, принимает активное участие в переваривании жиров. Однако дело не ограничивается всего лишь их эмульгированием. Желчь активизирует жирорасщепляющий фермент липозу панкреатического и кишечного сока. Желчь также ускоряет всасывание в кишечнике жирных кислот, каротина, витаминов Р, Е, К, холестерина, аминокислот, солей кальция. Желчь стимулирует перистальтику кишечника.

Используют, впрочем и теперь. Свойством абсорбировать желчные кислоты и выводить их из организма обладает клетчатка овощей и фруктов, но в еще большей степени пектиновые вещества. Наибольшее количество пектиновых веществ содержится в ягодах и фруктах, из которых можно приготовить желе без применения желатина. В первую очередь, это красная смородина, затем, по желеобразующей способности за ней следуют черная смородина, крыжовник, яблоки. Примечательно, что в печеных яблоках пектинов содержится в несколько раз больше, нежели в свежих. В свежем яблоке содержатся протопектины, которые при печении яблок превращаются в пектины. Печеные яблоки - непременный атрибут всех диет, когда нужно удалить из организма большое количество желчи (атеросклероз, заболевания печени, некоторые отравления и т. д.).

Выделительная (экскреторная) функция

Выделительная функция печени очень тесно связана с желчеобразованием, поскольку экскретируемые печенью вещества экскретируются через желчь и хотя бы уже поэтому они автоматически становятся составной частью желчи. К таким веществам относятся уже вышеописанные гормоны щитовидной железы, стероидные соединения, холестерин, медь и другие микроэлементы, витамины, порфириновые соединеиия (пигменты) и т. д.

Вещества, выделяемые практически только с желчью подразделяются на две группы:

  • · Вещества, связанные в плазме крови с белками (например, гормоны).
  • · Вещества, нерастворимые в воде (холестерин, стероидные соединения).

Одна из особенностей выделительной функции желчи заключается в том, что она способна вводить из организма такие вещества, которые никаким другим образом из организма выведены быть не могут. В крови мало свободных соединений. Большинство тех же гормонов прочно соединены с транспортными белками крови и будучи прочно соединенными с белками не могут преодолеть почечный фильтр. Такие вещества выделяются из организма вместе с желчью. Другой большой группой веществ, которые не могут быть выведены с мочой являются вещества, нерастворимые в воде.

Обезвреживающая функция

Печень выполняет защитную роль не только за счет обезвреживания и выведения токсичных соединений, но, даже за счет попавших в нее микробов, которых она уничтожает. Специальные клетки печени (купферовские клетки) подобно амебам захватывают чужеродные бактерии и переваривают их.

Свертывание крови

В печени синтезируются вещества, необходимые для свертывания крови, компоненты протромбинового комплекса (факторы II, VII, IX, X) для синтеза которых необходим витамин К. В печени образуются также фибраноген (белок, необходимый для свертывания крови), факторы V, XI, XII, XIII. Как это ни странно может показаться на первый взгляд, в печени же происходит синтез элементов противосвертывающей системы - гепарина (вещество, препятствующее свертыванию крови), антитромбина (вещество, препятствующее образованию тромбов), антиплазмина. У эмбрионов (зародышей) печень также служит кроветворным органом, где формируются эритроциты. С рождением человека эти функции берет на себя костный мозг.

Перераспределение крови в организме

Печень, помимо всех своих прочих функций неплохо выполняет функцию депо крови в организме. В связи с этим она может влиять на кровообращение всего организма. Все внутрипеченочные артерии и вены имеют сфинктеры, которые в очень широких пределах могут изменять кровоток в печени. В среднем кровоток в печени составляют 23 мл/кс/мин. В норме почти 75 мелких сосудов печени выключено сфинктерами из общей циркуляции. При повышении общего кровяного давления происходит расширение сосудов печени и печеночный кровоток в несколько раз возрастает. Наоборот, падение кровяного давления приводит к сужению сосудов в печени и печеночный кровоток уменьшается.

Возрастные изменения

Функциональные возможности печени человека наиболее высоки в раннем детском возрасте и очень медленно умньшаются в возрастом.

Печень

Зачем человеку печень

Печень- это самый крупный наш орган, его масса составляет от 3 до 5% массы тела. Основную массу органа составляют клетки гепатоциты. Это название часто встречается, когда речь заходит о функциях и болезнях печени, поэтому запомним его. Гепатоциты специально приспособлены для синтеза, преобразования и хранения множества различных веществ, которые поступают из крови – и в большинстве случаев туда же возвращаются. Вся наша кровь протекает через печень; она наполняет многочисленные печеночные сосуды и специальные полости, а вокруг них сплошным тонким слоем расположились гепатоциты. Такая структура облегчает обмен веществ между печеночными клетками и кровью.

В печени очень много крови, но не вся она «проточная». Довольно значительный ее объем находится в резерве. При большой потере крови сосуды печени сжимаются и выталкивают свои запасы в общее кровеносное русло, спасая человека от шока.

Выделение желчи – одна из важнейших пищеварительных функций печени. Из печеночных клеток желчь поступает в желчные капилляры, которые объединяются в проток, впадающий в двенадцатиперстную кишку. Желчь вместе с пищеварительными ферментами разлагает жир на составляющие и облегчает его всасывание в кишечнике.

Печень синтезирует и разрушает жиры

Клетки печени синтезируют некоторые жирные кислоты и их производные, необходимые организму. Правда, есть среди этих соединений и те, которые многие считают вредными, – это липопротеиды низкой плотности (ЛПНП) и холестерин, избыток которых образует атеросклеротические бляшки в сосудах. Но не спешите ругать печень: мы не можем обойтись без этих веществ. Холестерин – непременный компонент мембран эритроцитов (красных кровяных телец), а доставляют его к месту образования эритроцитов именно ЛПНП. Если холестерина слишком много, эритроциты теряют эластичность и с трудом протискиваются сквозь тонкие капилляры. Люди думают, что у них проблемы с кровообращением, а у них печень не в порядке. Здоровая печень мешает образованию атеросклеротических бляшек, ее клетки извлекают из крови избыток ЛПНП, холестерина и других жиров и разрушают их.

Печень синтезирует белки плазмы крови.

Почти половина белка, который синтезирует за сутки наш организм, образуется в печени. Самые важные среди них – белки плазмы крови, прежде всего альбумин. На его долю приходится 50% всех белков, создаваемых печенью. В плазме крови должна быть определенная концентрация белков, и поддерживает ее именно альбумин. Кроме того, он связывает и переносит многие вещества: гормоны, жирные кислоты, микроэлементы. Помимо альбумина, гепатоциты синтезируют белки свертывания крови, препятствующие образованию тромбов, а также многие другие. Когда белки состарятся, их распад происходит в печени.

В печени образуется мочевина

Белки в нашем кишечнике расщепляются на аминокислоты. Часть из них находит применение в организме, а остальные нужно удалить, потому что запасать их организм не может. Распад ненужных аминокислот происходит в печени, при этом образуется токсичный аммиак. Но печень не позволяет организму отравиться и сразу преобразует аммиак в растворимую мочевину, которая затем выводится с мочой.

Печень делает из ненужных аминокислот нужные

Бывает, что в рационе человека не хватает каких-то аминокислот. Некоторые из них печень синтезирует, используя фрагменты других аминокислот. Однако некоторые аминокислоты печень делать не умеет, они называются незаменимыми и человек получает их только с пищей.

Печень превращает глюкозу в гликоген, а гликоген в глюкозу

В сыворотке крови должна быть постоянная концентрация глюкозы (иначе говоря – сахара). Она служит основным источником энергии для клеток головного мозга, мышечных клеток и эритроцитов. Самый надежный способ обеспечить постоянное снабжение клеток глюкозой – запасти ее после еды, а потом использовать по мере необходимости. Эта важнейшая задача возложена на печень. Глюкоза растворима в воде, и запасать ее неудобно. Поэтому печень вылавливает из крови избыток молекул глюкозы и превращает в нерастворимый полисахарид гликоген, который откладывается в виде гранул в клетках печени, а при необходимости снова превращается в глюкозу и поступает в кровь. Запаса гликогена в печени хватает начасов.

Печень запасает витамины и микроэлементы

Печень запасает жирорастворимые витамины А, D, Е и К, а также водорастворимые витамины С, В12, никотиновую и фолиевую кислоты. А еще этот орган хранит минеральные вещества, нужные организму в очень малых количествах, такие как медь, цинк, кобальт и молибден.

Печень разрушает старые эритроциты

У человеческого плода эритроциты (красные кровяные тельца, которые переносят кислород), образуются в печени. Постепенно эту функцию берут на себя клетки костного мозга, а печень начинает играть прямо противоположную роль – не создает эритроциты, а разрушает их. Эритроциты живут около 120 дней, а затем стареют и подлежат удалению из организма. В печени есть специальные клетки, которые отлавливают и разрушают старые эритроциты. При этом освобождается гемоглобин, который вне эритроцитов организму не нужен. Гепатоциты разбирают гемоглобин на «запчасти»: аминокислоты, железо и зеленый пигмент. Железо печень хранит, пока оно не потребуется для образования новых эритроцитов в костном мозге, а зеленый пигмент превращает в желтый – билирубин. Билирубин поступает в кишечник вместе с желчью, которую окрашивает в желтый цвет. Если печень больна, билирубин накапливается в крови и окрашивает кожу – это желтуха.

Печень регулирует уровень некоторых гормонов и активных веществ

В этом органе переводится в неактивную форму или разрушается избыток гормонов. Их список довольно длинный, поэтому здесь мы упомянем только инсулин и глюкагон, которые участвуют в превращении глюкозы в гликоген, и половые гормоны тестостерон и эстрогены. При хронических болезнях печени метаболизм тестостерона и эстрогенов нарушен, и у пациента появляются сосудистые звездочки, выпадают волосы под мышками и на лобке, у мужчин атрофируются яички. Печень удаляет избыток таких активных веществ, как адреналин и брадикинин. Первый из них увеличивает частоту сердечных сокращений, уменьшает отток крови к внутренним органам, направляя ее к скелетным мышцам, стимулирует расщепление гликогена и повышение уровня глюкозы в крови, а второй регулирует водный и солевой баланс организма, сокращения гладкой мускулатуры и проницаемость капилляров, а также выполняет некоторые другие функции. Плохо бы нам пришлось при избытке брадикинина и адреналина.

Печень уничтожает микробов

В печени есть специальные клетки-макрофаги, которые располагаются вдоль кровеносных сосудов и вылавливают оттуда бактерии. Пойманные микроорганизмы эти клетки заглатывают и уничтожают.

Как мы уже поняли, печень – решительный противник всего лишнего в организме, и уж конечно она не потерпит в нем ядов и канцерогенных веществ. Обезвреживание ядов происходит в гепатоцитах. После сложных биохимических преобразований токсины превращаются в безвредные, растворимые в воде вещества, которые покидают наше тело с мочой или желчью. К сожалению, не все вещества удается обезвредить. Например, при распаде парацетамола образуется сильнодействующее вещество, которое может необратимо повредить печень. Если печень нездорова, или пациент принял слишком большую дозу парацетомола, последствия могут быть печальными, вплоть до гибели клеток печени.

По материалам zdorovie.info

Правила использования материалов

Вся информация, размещенная на данном сайте, предназначена только для персонального пользования и не подлежит дальнейшему воспроизведению и/или распространению в печатных СМИ, иначе как с письменного разрешения «мед39.ру».

При использовании материалов в интернете, активная прямая ссылка на med39.ru обязательна!

Сетевое издание «МЕД39.РУ». Свидетельство о регистрации СМИ ЭЛ № ФС1 выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 26 апреля 2013 года.

Информация, размещенная на сайте не может рассматриваться как рекомендации пациентам по диагностике и лечению каких-либо заболеваний, равно как и не является заменой консультации с врачом!

Что происходит в печени с избытком глюкозы? Схема гликогенеза и гликогенолиза

Глюкоза является главным энергетическим материалом для функционирования человеческого тела. В организм она поступает с пищей в виде углеводов. На протяжении многих тысячелетий человек претерпевал массу эволюционных изменений.

Одним из важных приобретенных умений стала способность организма впрок запасать энергетические материалы на случай голода и синтезировать их из других соединений.

Избытки углеводов аккумулируются в организме при участии печени и сложных биохимических реакций. Все процессы накопления, синтеза и использования глюкозы регулируются гормонами.

Какую роль играет печень в накоплении углеводов в организме?

Существуют следующие пути для использования глюкозы печенью:

  1. Гликолиз. Сложный многоступенчатый механизм окисления глюкозы без участия кислорода, в результате которого образуется универсальные источники энергии: АТФ и НАДФ - соединения, обеспечивающие энергией протекание всех биохимических и обменных процессов в организме;
  2. Запасание в виде гликогена при участии гормона инсулина. Гликоген – неактивная форма глюкозы, которая может накапливаться и сберегаться в организме;
  3. Липогенез. Если глюкозы поступает больше, чем необходимо даже для образования гликогена, начинается синтез липидов.

Роль печени в углеводном обмене огромна, благодаря ей в организме постоянно присутствует запас углеводов, жизненно необходимых организму.

Что происходит с углеводами в организме?

Основная роль печени - регуляция углеводного обмена и глюкозы с последующим депонированием гликогена в гепатоцитах человека. Особенностью является превращение сахара под воздействием узкоспециальных ферментов и гормонов в особую его форму, этот процесс происходит исключительно в печени (необходимое условие потребления её клетками). Эти преобразования ускоряются ферментами гексо- и глюкокиназой при понижении уровня содержания сахара.

В процессе пищеварения (а углеводы начинают расщепляться сразу после попадания еды в ротовую полость) содержание глюкозы в крови повышается, вследствие чего происходит ускорение реакций, направленных на депонирование излишков. Тем самым предупреждается возникновение гипергликемии во время приёма пищи.

Сахар из крови с помощью ряда биохимических реакций в печени преобразуется в неактивное его соединение – гликоген и накапливается в гепатоцитах и мышцах. При наступлении энергетического голода с помощью гормонов организм способен высвобождать гликоген из депо и синтезировать из него глюкозу - это основной путь получения энергии.

Схема синтеза гликогена

Излишки глюкозы в печени используются в производстве гликогена под воздействием гормона поджелудочной железы - инсулина. Гликоген (животный крахмал) - это полисахарид, особенностью строения которого является древообразная структура. Запасают его гепатоциты в форме гранул. Содержание гликогена в печени человека может увеличиваться до 8% от массы клетки после принятия углеводистой еды. Распад нужен, как правило, для удержания уровня глюкозы в процессе пищеварения. При длительном голодании содержание гликогена понижается почти до нуля и снова синтезируется во время пищеварения.

Биохимия гликогенолиза

Если у организма повышается потребность в глюкозе - гликоген начинает распадаться. Механизм преобразования происходит, как правило, между приемами пищи, и ускоряется при мышечных нагрузках. Голодание (отсутствие приема пищи в течение не менее 24 часов) приводит к практически полному распаду гликогена в печени. Но при регулярном питании его запасы полностью восстанавливаются. Подобное аккумулирование сахара может существовать очень долго, до возникновения потребности в распаде.

Биохимия глюконеогенеза (путь получения глюкозы)

Глюконеогенез – процесс синтеза глюкозы из неуглеводных соединений. Его главная задача - удержание стабильного содержания углеводов в крови при недостатке гликогена или тяжёлой физической работе. Глюконеогенез обеспечивает продукцию сахара до 100 грамм в сутки. В состоянии углеводного голода организм способен синтезировать энергию с альтернативных соединений.

Для использования пути гликогенолиза при необходимости получения энергии нужны следующие вещества:

  1. Лактат (молочная кислота) – синтезируется при распаде глюкозы. После физических нагрузок возвращается в печень, где снова преобразуется в углеводы. Благодаря этому молочная кислота постоянно участвует в образовании глюкозы;
  2. Глицерин – результат распада липидов;
  3. Аминокислоты – синтезируются при распаде мышечных белков и начинают участвовать в образовании глюкозы при истощении запасов гликогена.

Основное количество глюкозы производится в печени (более 70 грамм в сутки). Главной задачей глюконеогенеза является снабжение сахаром мозга.

В организм попадают углеводы не только в виде глюкозы - это может быть и манноза, содержащаяся в цитрусовых. Манноза в результате каскада биохимических процессов преобразуется в соединение, подобное глюкозе. В этом состоянии она вступает в реакции гликолиза.

Схема пути регулирования гликогенеза и гликогенолиза

Путь синтеза и распада гликогена регулируется такими гормонами:

  • Инсулин – гормон поджелудочной железы белковой природы. Он понижает содержание сахара в крови. В целом особенностью гормона инсулина является влияние на обмен гликогена, в противоположность глюкагону. Инсулин регулирует дальнейший путь преобразования глюкозы. Под его влиянием происходит транспортировка углеводов в клетки организма, а из их избытков - образование гликогена;
  • Глюкагон – гормон голода – вырабатывается поджелудочной железой. Имеет белковую природу. В противоположность инсулину, ускоряет распад гликогена, и способствует стабилизации уровня глюкозы в крови;
  • Адреналин – гормон стресса и страха. Его выработка и выделение происходят в надпочечниках. Стимулирует выброс избытка сахара из печени в кровь, для снабжения тканей «питанием» в стрессовой ситуации. Так же, как и глюкагон, в отличие от инсулина, ускоряет катаболизм гликогена в печени.

Перепад количества углеводов в крови активирует производство гормонов инсулина и глюкагона, смену их концентрации, что переключает распад и образование гликогена в печени.

Одной из важных задач печени является регулирование пути синтеза липидов. Липидный обмен в печени включает производство разных жиров (холестерина, триацилглицеридов, фосфолипидов, и др.). Эти липиды поступают в кровь, их присутствие обеспечивает энергией ткани организма.

Печень непосредственно участвует в поддержании энергетического баланса в организме. Ее заболевания способны привести к нарушению важных биохимических процессов, в результате чего будут страдать все органы и системы. Необходимо тщательно следить за своим здоровьем и при необходимости не откладывать визит к врачу.

Внимание! Информация о препаратах и народных средствах лечения представлена только для ознакомления. Ни в коем случае нельзя применять лекарство или давать его своим близким без врачебной консультации! Самолечение и бесконтрольный прием препаратов опасен развитием осложнений и побочных эффектов! При первых признаках болезней печени необходимо обратиться к врачу.

©18 Редакция портала «Моя Печень».

Использование материалов сайта разрешено только с предварительного согласования с редакцией.