Реакторы на быстрых нейтронах. Рекордсмен на быстрых нейтронах

Многие специалисты сегодня считают, что будущим ядерной энергетики являются реакторы на быстрых нейтронах. Одним из пионеров в освоении этой технологии является Россия, где уже 30 лет без серьезных происшествий работает реактор на быстрых нейтронах БН-600 на Белоярской АЭС, там же строится реактор БН-800 и планируется создание коммерческого реактора БН-1200. Опыт эксплуатации АЭС на быстрых нейтронах имеется у Франции и Японии, рассматриваются планы строительства АЭС на быстрых нейтронах в Индии и Китае. Спрашивается, почему же в стране с очень высокоразвитой ядерной энергетикой – в США – практических программ по развитию энергетики на быстрых нейтронах не наблюдается?

На самом деле такой проект в США был. Речь идет о проекте реактора-бридера Клинч Ривер (по английски - The Clinch River Breeder Reactor, сокращенно CRBRP). Целью этого проекта были разработка и создание натриевого реактора на быстрых нейтронах, который должен был быть демонстрационным прототипом для следующего класса аналогичных американских реакторов под названием LMFBR (сокращение от фразы Liquid Metal Fast Breeder Reactors – жидкометаллический быстрый реактор). При этом реактор Клинч-Ривер задумывался как существенный шаг на пути к освоению технологии жидкометаллических быстрых реакторов с целью их коммерческого использования в электроэнергетике. Местом размещения реактора Клинч-Ривер должен был стать участок площадью 6 км 2 , административно входящий в состав города Оук-Ридж в штате Теннесси.

Реактор должен был иметь тепловую мощность 1000 Мвт и электрическую мощность в интервале 350-380 МВт. Топливом для него должны были быть 198 шестигранных сборок, собранных в форме цилиндра с двумя зонами обогащения топлива. Внутренняя часть реактора должна была состоять из 108 сборок, содержащих плутоний, обогащенный до 18%. Их должна была окружать внешняя зона, состоящая из 90 сборок с плутонием, обогащенным до 24%. Такая конфигурация должна была обеспечить наилучшие условия для тепловыделения.

Впервые проект был представлен в 1970 году. В 1971 году президент США Ричард Никсон установил эту технологию как один из высших приоритетов для научно-исследовательских работ страны.

Что же помешало его реализации?

Одной из причин такого решения была продолжающаяся эскалация стоимости проекта. В 1971 году Комиссия по атомной энергии США установила, что стоимость проекта составит порядка 400 млн долларов. Частный сектор обещал профинансировать большую часть проекта, выделив 257 млн долларов. В последующие годы, однако, стоимость проекта подпрыгнула до 700 млн. По состоянию на 1981 год был потрачен уже миллиард долларов бюджетных средств, при том, что стоимость проекта оценивалась в тот момент в 3 – 3,2 млрд долларов, не считая еще одного миллиарда, который был необходим для строительства завода по производству гененерированного топлива. В 1981 году комитет Конгресса вскрыл случаи различных злоупотреблений, что еще более утяжелило стоимость проекта.

Перед тем, как принять решение о закрытии, стоимость проекта оценивалась уже в 8 млрд долларов.

Другой причиной стала высокая стоимость строительства и эксплуатации самого реактора-бридера для производства электричества. В 1981 году было оценено, что стоимость строительства быстрого реактора будет вдвое больше строительства стандартного легководного реактора такой же мощности. Было также подсчитано, что для того, чтобы бридер мог экономически конкурировать с обычными легководными реакторами, цена урана должна составлять 165 долларов за фунт, в то время как в действительности эта цена находилась тогда на уровне 25 долларов за фунт. Частные генерирующие компании не пожелали вкладывать деньги в такую рискованную технологию.

Еще одной серьезной причиной для сворачивания программы бридеров стала угроза возможного нарушения режима нераспространения, поскольку в этой технологии происходит наработка плутония, который также может быть использован для производства ядерного оружия. Из-за международной озабоченности по поводу вопросов распространения ядерных материалов, в апреле 1977 году президент США Джимми Картер призвал отложить на неопределенный срок строительство коммерческих быстрых реакторов.

Президент Картер вообще был последовательным оппонентом проекта Клинч Ривер. В ноябре 1977 года, наложив вето на законопроект о продолжении финансирования, Картер сказал, что это будет «неоправданно дорого» и «после завершения строительства станет технически устаревшим и экономически необоснованным». Кроме этого он заявил о бесперспективности технологии быстрых реакторов вообще. Вместо того, чтобы вкладывать ресурсы в демонстрационный проект на быстрых нейтронах, Картер предлагал взамен «потратиться на увеличение безопасности существующих ядерных технологий».

Проект Клинч Ривер был возобновлен после прихода к власти Рональда Рейгана в 1981 году. Несмотря на растущую оппозицию со стороны Конгресса, он отменил запрет своего предшественника, и строительство возобновилось. Однако, 26 октября 1983 года, несмотря на успешный ход строительных работ, Сенат США большинством (56 против 40) призвал отказаться от дальнейшего финансирования строительства и объект был заброшен.

В очередной раз о нем вспомнили совсем недавно, когда в США стал разрабатываться проект маломощного реактора mPower. В качестве места его строительства как раз и рассматривается площадка планировавшегося строительства АЭС Клинч-Ривер.

Сопровождающееся выделением температуры, в зависимости от конструктивных особенностей различают две их разновидности - реактор на быстрых нейтронах и медленных, иногда называемых тепловыми.

Нейтроны, выделившиеся в процессе реакции, обладают очень высокой начальной скоростью, теоретически преодолевая за секунду тысячи километров. Это - быстрые нейтроны. В процессе перемещения из-за столкновения с атомами окружающей материи их скорость замедляется. Одним из простых и доступных способов искусственно снизить скорость является размещение у них на пути воды или графита. Таким образом, научившись регулировать уровень этих частиц, человек получил возможность создать два типа реакторов. Свое название «тепловые» нейтроны получили благодаря тому, что скорость их перемещения после замедления практически соответствует естественной скорости внутриатомного теплового движения. В численном эквиваленте она составляет до 10 км в секунду. Для микромира это значение относительно низко, поэтому захват частиц ядрами происходит очень часто, вызывая новые витки деления (цепную реакцию). Следствием этого является необходимость в гораздо меньшем количестве делящегося вещества, чем не могут похвастаться реакторы на быстрых нейтронах. Кроме того, снижаются некоторые другие Данный момент как раз и объясняет, почему большинство работающих ядерных станций используют именно медленные нейтроны.

Казалось бы - если все просчитано, то зачем нужен реактор на быстрых нейтронах? Оказывается, не все так однозначно. Важнейшее преимущество таких установок - способность обеспечивать другие реакторы, а также создавать увеличенный цикл деления. Остановимся на этом более подробно.

Реактор на быстрых нейтронах более полно использует загруженное в активную зону топливо. Начнем по порядку. Теоретически, использовать в качестве горючего можно лишь два элемента: плутоний-239 и уран (изотопы 233 и 235). В природе встречается лишь изотоп U-235, но его совсем мало, чтобы говорить о перспективности такого выбора. Указанные уран и плутоний - это производные от тория-232 и урана-238, которые образуются в результате воздействия на них потока нейтронов. А вот уже эти два гораздо чаще встречаются в естественной форме. Таким образом, если бы удалось запустить самоподдерживающуюся цепную реакцию деления U-238 (или плутония-232) , то ее результатом стало бы возникновение новых порций делящегося вещества - урана-233 или плутония-239. При замедлении нейтронов до тепловой скорости (классические реакторы) такой процесс невозможен: топливом в них служат именно U-233 и Pu-239, а вот реактор на быстрых нейтронах позволяет выполнить такое дополнительное преобразование.

Процесс выглядит следующим образом: загружаем уран-235 или торий-232 (сырье), а также порцию урана-233 или плутония-239 (топливо). Последние (любой из них) обеспечивают поток нейтронов, необходимый для «зажигания» реакции в первых элементах. В процессе распада выделяется преобразуемая генераторами станции в электричество. Быстрые нейтроны воздействуют на сырье, преобразуя эти элементы в…новые порции топлива. Обычно количества сгоревшего и образовавшегося топлива равны, но если сырья загружено больше, то генерация новых порций делящегося материала происходит даже быстрее, чем расход. Отсюда второе название таких реакторов - размножители. Излишки топлива можно использовать в классических медленных разновидностях реакторов.

Недостаток моделей на быстрых нейтронах в том, что перед загрузкой уран-235 должен быть обогащен, что требует дополнительных финансовых вложений. Кроме того, сама конструкция активной зоны более сложна.

В предыдущих статьях - мы выяснили, что ни солнечная энергетика не сможет удовлетворить потребности человечества (из-за быстрого выхода из строя аккумуляторов и их стоимости), ни термоядерная (т.к. даже после достижения на экспериментальных реакторах положительного выхода энергии - остается фантастическое количество проблем на пути коммерческого использования). Что же остается?

Уже не первую сотню лет, не смотря на весь прогресс человечества, основной объем электроэнергии получается от банального сжигания угля (который до сих пор является источником энергии для 40.7% генерирующих мощностей в мире), газа (21.2%), нефтепродуктов (5.5%) и гидроэнергетики (еще 16.2%, в сумме все это - 83.5% по ).

Остается - ядерная энергетика, с обычными реакторами на тепловых нейтронах (требующих редкий и дорогой U-235) и с реакторами на быстрых нейтронах (которые могут перерабатывать природный U-238 и торий в «замкнутом топливном цикле»).

Что это за мифический «замкнутый топливный цикл», в чем отличия реакторов на быстрых и тепловых нейтронах, какие существуют конструкции, когда нам от всего этого ждать счастья и конечно - вопрос безопасности - под катом.

О нейтронах и уране

Всем нам в школе рассказывали, что U-235 при попадании в него нейтрона - делится с выделением энергии, и вылетают еще 2-3 нейтрона. В реальности конечно все несколько сложнее, и процесс этот сильно зависит от энергии этого начального нейтрона. Посмотрим на графики сечения (=вероятности) реакции захвата нейтрона (U-238 + n -> U-239 и U-235 + n -> U-236), и реакции деления для U-235 и U-238 в зависимости от энергии (=скорости) нейтронов:




Как видим, вероятность захвата нейтрона с делением для U-235 - растет с понижением энергии нейтрона, потому в обычных ядерных реакторах нейтроны «замедляют» в графите/воде до такой степени, что их скорость становится того же порядка, как и скорость теплового колебания атомов в кристаллической решетке (отсюда и название - тепловые нейтроны). А вероятность деления U-238 тепловыми нейтронами - в 10млн раз меньше U-235, потому и приходится природный уран тоннами перерабатывать, чтобы наковырять U-235.

Кто-то посмотрев на нижний график может сказать: О, отличная идея! А давайте 10MeV нейтронами дешевый U-238 прожаривать - должна же получится цепная реакция, ведь там как раз график сечения для деления идет вверх! Но тут есть проблема - нейтроны, выделяющиеся в результате реакции имеют энергию всего 2MeV и менее (в среднем ~1.25), и этого не достаточно, чтобы запустить самоподдерживающуюся реакцию на быстрых нейтронах в U-238 (нужна или энергия больше, или чтобы больше нейтронов вылетало с каждого деления). Эх, не повезло человечеству в этой вселенной…

Впрочем, если бы так просто получалась самоподдерживающаяся реакция на быстрых нейтронах в U-238 - были бы и природные ядерные реакторы, как это было с U-235 в Окло , и соответственно U-238 в природе в виде крупных месторождений не встречался бы.

Наконец, если отказаться от «самоподдерживаемости» реакции - делить U-238 напрямую с получением энергии все-же можно. Это например используется в термоядерных бомбах - нейтроны с энергией 14.1MeV от реакции D+T делят U-238 в оболочке бомбы - и таким образом можно практически бесплатно увеличить мощность взрыва. В контролируемых условиях - остается теоретическая возможность совмещения термоядерного реактора и бланкета (оболочки) из U-238 - чтобы энергию термоядерного синтеза увеличить в ~10-50 раз за счет реакции деления.

Но как же делить U-238 и торий в самоподдерживающейся реакции?

Замкнутый топливный цикл

Идея следующая: посмотрим не на сечение деления, а на сечение захвата: При подходящей энергии нейтрона (не слишком маленькая, и не слишком большая) U-238 может захватить нейтрон, и после 2-х распадов - стать плутонием-239:

Из отработанного топлива - плутоний можно выделить химическим путем, и сделать MOX-топливо (смесь оксидов плутония и урана) которое можно сжечь как в быстрых реакторах, так и в обычных, тепловых. Процесс химической переработки отработанного топлива - может быть весьма трудным из-за его высокой радиоактивности, и пока решен не полностью и не отработан практически (но работа идет).

Для природного тория - аналогичный процесс, торий захватывает нейтрон, и после спонтанного деления - становится ураном-233, который делится примерно также, как и уран-235 и выделяется из отработанного топлива химическим путем:

Эти реакции конечно идут и в обычных тепловых реакторах - но из-за замедлителя (которые сильно снижают шанс захвата нейтрона) и управляющих стержней (которые поглощают часть нейтронов) количество сгенерированного плутония - меньше, чем сгорает урана-235. Для того, чтобы генерировать больше делящихся веществ, чем их сгорает - нужно как можно меньше нейтронов терять на управляющих стержнях (например используя управляющие стержни из обычного урана), конструкции, теплоносителе (об это ниже) и полностью избавиться от замедлителя нейтронов (графита или воды).

Из-за того, что сечение деления быстрыми нейтронами - меньше, чем тепловыми - приходится повышать концентрацию делящегося вещества (U-235, U-233, Pu-239) в ядре реактора с 2-4 до 20% и выше. А наработка нового топлива - ведется в кассетах с торием/природным ураном, расположенных вокруг этого ядра.

По счастливой случайности, если деление вызвано быстрым нейтроном, а не тепловым - в результате реакции выделяется в ~1.5 раза больше нейтронов, чем в случае деления тепловыми нейтронами - что делает реакцию более реалистичной:

Именно это увеличение количества генерируемых нейтронов и обеспечивает возможность наработки бОльшего количества топлива, чем его было изначально. Конечно, новое топливо берется не из воздуха, а нарабатывается из «бесполезного» U-238 и тория.

О теплоносителе

Как мы выяснили выше - воду в быстром реакторе использовать нельзя - она чрезвычайно эффективно замедляет нейтроны. Чем её можно заменить?

Газы: Можно охлаждать реактор гелием. Но из-за небольшой теплоемкости - мощные реакторы охладить таким образом сложно.

Жидкие металлы: Натрий, калий - широко используются в быстрых реакторах по всему миру. Из плюсов - низкая температура плавления и работа при около-атмосферном давлении, но эти металлы очень хорошо горят и реагируют с водой. Единственный в мире действующий энергетический реактор БН-600 - работает именно на натриевом теплоносителе.

Свинец, висмут - используются в разрабатываемых сейчас в России реакторов БРЕСТ и СВБР . Из очевидных минусов - если реактор охладился ниже температуры замерзания свинца/висмута - разогревать его очень сложно и долго (о не очевидных - можно почитать по ссылке в вики). В общем, технологических вопросов на пути реализации остается много.

Ртуть - с ртутным теплоносителем был реактор БР-2, но как оказалось, ртуть относительно быстро растворяет конструкционные материалы реактора - так что больше ртутные реакторы не строили.

Экзотика: Отдельная категория - реакторы на расплавленных солях - LFTR - работают на разных вариантах фторидов делящихся материалов (урана, тория, плутония). 2 «лабораторных» реактора были построены в США в Oak Ridge National Laboratory в 60-х годах, и с тех времен других реакторов пока реализовано не было, хотя проектов много.

Действующие реакторы и интересные проекты

Российский БОР-60 - опытный реактор на быстрых нейтронах, действует с 1969 года. На нем в частности тестируют элементы конструкций новых реакторов на быстрых нейтронов.

Российские БН-600, БН-800 : Как уже упоминалось выше, БН-600 - единственный энергетический реактор на быстрых нейтронах в мире. Работает с 1980-го года, пока на уране-235.

В 2014-м году - планируется к запуску более мощный БН-800 . На нем уже планируется начинать использовать MOX топливо (с плутонием), и начать отрабатывать замкнутый топливный цикл (с переработкой и сжиганием нарабатываемого плутония). Затем может быть и серийный БН-1200 , но решение о его строительстве пока не принято. По опыту строительства и промышленной эксплуатации реакторов на быстрых нейтронах - Россия продвинулась намного дальше всех, и продолжает активное развитие.

Небольшие действующие исследовательские быстрые реакторы - есть еще в Японии (Jōyō), Индии (FBTR) и Китае (China Experimental Fast Reactor).

Японский Monju reactor - самый несчастливый реактор в мире. В 1995-м году его построили, и в том же году - произошла утечка нескольких сотен килограмм натрия, компания пыталась скрыть масштабы происшествия (привет Фукусима), реактор был остановлен на 15 лет. В мае 2010-го реактор наконец запустили на сниженной мощности, однако в августе во время перегрузки топлива в реактор уронили 3.3-тонный кран, который сразу утонул в жидком натрии. Достать кран удалось лишь в июне 2011-го. 29-го мая 2013-го года будет приниматься решение о том, чтобы закрыть реактор навсегда.

Traveling wave reactor : Из известных нереализованных проектов - «реактор на бегущей волне» - traveling wave reactor, компании TerraPower. Этот проект продвигал Билл Гейтс - так что об этом дважды писали на Хабре: , . Идея была в том, что «ядро» реактора состояло из обогащенного урана, а вокруг него - кассеты с U-238/торием, в которых бы нарабатывалось будущее топливо. Затем, робот придвигал бы эти кассеты ближе к центру - и реакция продолжалась бы. Но в реальности - без химической переработки все это заставить работать весьма непросто, и проект так и не взлетел.

О безопасности ядерной энергетики

Как я могу говорить о том, что человечество может положиться на ядерную энергетику - и это-то после Фукусимы?

Дело в том, что любая энергетика опасна. Вспомним аварию на дамбе Баньцяо в Китае, построенную в том числе и в целях генерации электричества - тогда погибли от 26тыс. до 171тыс. человек. Авария на Саяно-Шушенской ГЭС - погибло 75 человек. В одном Китае при добыче угля ежегодно погибают 6000 шахтеров, и это не считая последствий для здоровья от вдыхания выхлопов ТЭЦ.

Количество же аварий на АЭС - не зависит от количества энергоблоков, т.к. каждая авария может произойти только один раз в серии. После каждого инцидента - причины анализируются, и устраняются на всех блоках. Так, после чернобыльской аварии - были доработаны все блоки, а после Фукусимы - у японцев отобрали ядерную энергетику вообще (впрочем, тут есть и конспирологические мотивы - у США и союзников предвидится дефицит урана-235 в ближайшие 5-10 лет).

Проблему с отработанным топливом - напрямую решают реакторы на быстрых нейтронах, т.к. помимо совершенствования технологии переработки отходов, самих отходов образуется меньше: тяжелые (актиниды), долгоживущие продукты реакции также «выжигаются» быстрыми нейтронами.

Заключение

Быстрые реакторы - обладают основным преимуществом, которого все ждут от термоядерных - топлива для них человечеству хватит на тысячи и десятки тысяч лет. Его даже добывать не нужно - оно уже добыто, и лежит на

Академик Ф. Митенков, научный руководитель ФГУП "Опытное конструкторское бюро машиностроения" им. И. И. Африкантова (г. Нижний Новгород).

Академик Федор Михайлович Митенков был удостоен премии "Глобальная энергия" 2004 года за разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах (см. "Наука и жизнь" №8, 2004 г.). Исследования, проведенные лауреатом, и их практическое воплощение в действующие реакторные установки БН-350, БН-600, строящуюся БН-800 и проектируемую БН-1800, открывают человечеству новое, перспективное направление развития атомной энергетики.

Белоярская АЭС с реактором БН-600.

Академик Ф. М. Митенков на церемонии вручения премии "Глобальная энергия" в июне 2004 года.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Принципиальная схема реактора на быстрых нейтронах БН-350.

Принципиальная схема быстрого энергетического реактора БН-600.

Центральный зал реактора БН-600.

Реактор на быстрых нейтронах БН-800 имеет электрическую мощность 880 МВт, тепловую 1,47 ГВт. При этом его конструкция обеспечивает полную безопасность как при нормальной работе, так и при любой мыслимой аварии.

Наука и жизнь // Иллюстрации

Потребление энергии - важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века: потребление энергии увеличилось почти в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающихся странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь ее наиболее универсального вида - электричества. К середине XXI века прогнозируется удвоение мирового энергопотребления и утроение потребления электроэнергии.

Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, порождает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.

Поэтому в не столь уж отдаленном будущем человечество будет вынуждено перейти на использование альтернативных "безуглеродных" технологий производства энергии, которые позволят в течение длительного времени надежно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии - ветровой, солнечной, геотермальной, приливной и др. - по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства (см. "Наука и жизнь" № 10, 2002 г. - Прим. ред. ). А весьма многообещающая технология управляемого термоядерного синтеза все еще находится на стадии исследований и создания демонстрационного ядерного реактора (см. "Наука и жизнь"№8, 2001 г. ,№9, 2001 г. - Прим. ред. ).

По мнению многих специалистов, к числу которых относится и автор настоящей статьи, реальным энергетическим выбором человечества в XXI веке станет широкое использование ядерной энергии на основе реакторов деления. Атомная энергетика могла бы уже сейчас взять на себя значительную часть прироста мировых потребностей в топливе и энергии. Сегодня она обеспечивает около 6% мирового потребления энергии, в основном электрической, где ее доля составляет около 18% (в России - около 16%).

Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива - обеспечивать функционирование "большой" атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономические показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.

Посмотрим, насколько современная атомная энергетика отвечает этим требованиям.

О гарантированной безопасности атомной энергетики

Вопросы безопасности атомной энергетики с момента ее зарождения рассматривались и достаточно эффективно решались системно и на научной основе. Однако в период ее становления все-таки возникали аварийные ситуации с недопустимыми выбросами радиоактивности, в том числе две крупномасштабные аварии: на АЭС "Три Майл Айленд" (США) в 1979 году и на Чернобыльской АЭС (СССР) в 1986-м. В связи с этим мировое сообщество ученых и специалистов-атомщиков под эгидой Международного агентства по атомной энергии (МАГАТЭ) разработало рекомендации, соблюдение которых практически исключает недопустимые воздействия на окружающую среду и население при любых физически возможных авариях на АЭС. Они, в частности, предусматривают: если в проекте с достоверностью не обосновано, что расплавление активной зоны реактора исключается, возможность такой аварии необходимо учитывать и доказывать, что предусмотренные в конструкции реактора физические барьеры гарантированно исключают недопустимые последствия для окружающей среды. Рекомендации МАГАТЭ вошли составной частью в национальные нормативы по безопасности атомной энергетики многих стран мира. Некоторые инженерные решения, обеспечивающие безопасность эксплуатации современных реакторов, описаны ниже на примере реакторов БН-600 и БН-800.

Ресурсная база для производства ядерного топлива

Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах с водяным или графитовым замедлителем нейтронов, не может обеспечить развития крупномасштабной атомной энергетики. Это связано с низкой эффективностью использования природного урана в таких реакторах: используется только изотоп U-235, содержание которого в природном уране составляет всего лишь 0,72%. Поэтому долговременная стратегия развития "большой" атомной энергетики предполагает переход к прогрессивной технологии замкнутого топливного цикла, основанной на использовании так называемых быстрых ядерных реакторов и переработке топлива, выгруженного из реакторов атомных станций, для последующего возврата в энергетический цикл невыгоревших и вновь образовавшихся делящихся изотопов.

В "быстром" реакторе бoльшую часть актов деления ядерного топлива вызывают быстрые нейтроны с энергией более 0,1 МэВ (отсюда и название "быстрый" реактор). При этом в реакторе происходит деление не только очень редкого изотопа U-235, но и U-238 - основной составляющей природного урана (~99,3%), вероятность деления которого в спектре нейтронов "теплового реактора" очень низка. Принципиально важно, что в "быстром" реакторе при каждом акте деления ядер образуется большее количество нейтронов, которые могут быть использованы для интенсивного превращения U-238 в делящийся изотоп плутония Pu-239. Это превращение происходит в результате ядерной реакции:

Нейтронно-физические особенности быстрого реактора таковы, что процесс образования в нем плутония может иметь характер расширенного воспроизводства, когда в реакторе образуется вторичного плутония больше, чем выгорает первоначально загруженного. Процесс образования избыточного количества делящихся изотопов в ядерном реакторе получил название "бридинг" (от англ. breed - размножать). С этим термином связано принятое в мире название быстрых реакторов с плутониевым топливом - реакторы-бридеры, или размножители.

Практическая реализация процесса бридинга имеет принципиальное значение для будущего атомной энергетики. Дело в том, что такой процесс дает возможность практически полностью использовать природный уран и тем самым почти в сто раз увеличить "выход" энергии из каждой тонны добытого природного урана. Это открывает путь к практически неисчерпаемым топливным ресурсам атомной энергетики на длительную историческую перспективу. Поэтому общепризнано, что использование бридеров - необходимое условие создания и функционирования атомной энергетики большого масштаба.

После того как в конце 1940-х годов была осознана принципиальная возможность создания быстрых реакторов-размножителей, в мире начались интенсивные исследования их нейтронно-физических характеристик и поиски соответствующих инженерных решений. В нашей стране инициатором исследований и разработок по быстрым реакторам стал академик Украинской академии наук Александр Ильич Лейпунский, который до своей кончины в 1972 году был научным руководителем обнинского Физико-энергетического института (ФЭИ).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей. К их числу относятся: большая энергонапряженность топлива; необходимость обеспечить его интенсивное охлаждение; высокие рабочие температуры теплоносителя, элементов конструкции реактора и оборудования; радиационные повреждения конструкционных материалов, вызванные интенсивным облучением быстрыми нейтронами. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, во Франции, в Великобритании и Германии. Примечательно, что во всех странах в качестве охлаждающей среды - теплоносителя - для быстрых реакторов был выбран натрий, несмотря на то, что он активно реагирует с водой и водяным паром. Решающими достоинствами натрия как теплоносителя стали его исключительно хорошие теплофизические свойства (высокая теплопроводность, большая теплоемкость, высокая температура кипения), низкие затраты энергии на циркуляцию, пониженное коррозионное воздействие на конструкционные материалы реактора, относительная простота его очистки в процессе эксплуатации.

Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря (см. "Наука и жизнь" № 11, 1976 г. - Прим. ред. ). Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Реакторная установка БН-350, несмотря на сложность ее технологической схемы, успешно работала с 1973 по 1988 год (на пять лет дольше проектного времени) в составе Мангышлакского энергетического комбината и завода опреснения морской воды в г. Шевченко (ныне - Актау, Казахстан).

Большая разветвленность натриевых контуров в реакторе БН-350 вызывала беспокойство, поскольку в случае их аварийной разгерметизации мог возникнуть пожар. Поэтому, не дожидаясь пуска реактора БН-350, в СССР началось проектирование более мощного быстрого реактора БН-600 интегральной конструкции, в котором натриевые трубопроводы большого диаметра отсутствовали и почти весь радиоактивный натрий первого контура был сосредоточен в корпусе реактора. Это позволило практически полностью исключить опасность разгерметизации первого натриевого контура, снизить пожарную опасность установки, повысить уровень радиационной безопасности и надежности реактора.

Реакторная установка БН-600 надежно работает с 1980 года в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных конструкционных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция.

Обеспечение безопасности быстрых реакторов

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при их нормальной работе, так и при аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключить недопустимые воздействия на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных систем локализации потенциально возможных аварий, ограничивающих их последствия.

Самозащищенность реактора основана в первую очередь на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при повышении температуры и мощности реактора, а также на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Высокая температура кипения натрия (883oС при нормальных физических условиях) позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. Но даже такая авария в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен герметичным страховочным кожухом, а объем возможной утечки натрия в него незначителен. Разгерметизация трубопроводов с натриевым теплоносителем в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Поскольку теплоемкость натрия достаточно велика, даже при полном прекращении отвода тепла в пароводяной контур температура теплоносителя в реакторе будет повышаться со скоростью примерно 30 градусов в час. При нормальной работе температура теплоносителя на выходе из реактора составляет 540oС. Значительный запас температуры до закипания натрия дает резерв времени, достаточный, чтобы принять меры, ограничивающие последствия подобной маловероятной аварии.

В проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, приняты дополнительные меры, обеспечивающие сохранение герметичности реактора и исключающие недопустимые воздействия на окружающую среду, даже при гипотетической крайне маловероятной аварии с расплавлением активной зоны реактора.

Блочный щит управления реактора БН-600.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было ни аварий со сверхнормативными выбросами радиоактивности, ни облучения персонала и тем более местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, ими легко управлять. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует его пожароопасность. Утечки и горение натрия персонал уверенно обнаруживает, а их последствия надежно ликвидирует. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии со стороны.

Технико-экономические показатели быстрых реакторов

Особенности натриевой технологии, повышенные меры безопасности, консервативный выбор проектных решений первых реакторов - БН-350 и БН-600 стали причинами более высокой их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако их создавали главным образом для проверки работоспособности, безопасности и надежности быстрых реакторов. Эта задача и была решена их успешной эксплуатацией. При создании следующей реакторной установки - БН-800, предназначенной для массового использования в атомной энергетике, больше внимания уделили технико-экономическим характеристикам, и в результате по удельным капитальным затратам удалось существенно приблизиться к ВВЭР-1000 - основному типу отечественных энергетических реакторов на медленных нейтронах.

К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал дальнейшего технико-экономического совершенствования. К основным направлениям улучшения их экономических характеристик при одновременном повышении уровня безопасности относятся: повышение единичной мощности реактора и основных компонентов энергоблока, совершенствование конструкции основного оборудования, переход на закритические параметры пара с целью увеличения термодинамического кпд цикла преобразования тепловой энергии, оптимизация системы обращения со свежим и отработавшим топливом, увеличение глубины выгорания ядерного топлива, создание активной зоны с высоким внутренним коэффициентом воспроизводства (КВ) - до 1, увеличение срока службы до 60 лет и более.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки перспективного реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить их стоимость, а также площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Как влияет мощность реактора и технологическое совершенствование оборудования на металлоемкость и уровень капитальных затрат, можно видеть из таблицы.

Совершенствование быстрых реакторов, естественно, потребует определенных усилий со стороны промышленных предприятий, научных и проектных организаций. Так, для увеличения глубины выгорания ядерного топлива предстоит разработать и освоить производство конструкционных материалов активной зоны реактора, более стойких к нейтронному облучению. Работы в этом направлении в настоящее время ведутся.

Быстрые реакторы могут служить не только для получения энергии. Потоки нейтронов высокой энергии способны эффективно "сжигать" наиболее опасные долгоживущие радионуклиды, образующиеся в отработавшем ядерном топливе. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада некоторых радионуклидов (актиноидов) намного превышает научно обоснованные сроки стабильности геологических формаций, которые рассматриваются в качестве мест окончательного захоронения радиоактивных отходов. Поэтому, применив замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов атомной энергетики и многократно уменьшить объем радиоактивных отходов, подлежащих захоронению.

Перевод атомной энергетики, наряду с "тепловыми" реакторами, на быстрые реакторы-бридеры, а также на замкнутый топливный цикл позволит создать безопасную энергетическую технологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.

Ядерные энергетические установки используются на атомных электрических станциях, на спутниках Земли, на крупном морском транспорте, основным элементом которых является ядерный реактор.

Ядерным реактором называется устройство, в котором осуществляется управляемая цепная реакция деления тяжелых ядер, сопровождающаяся выделением энергии. Как уже отмечалось ранее, условием осуществления самоподдерживающейся цепной ядерной реакции является наличие достаточного количества вторичных нейтронов, возникающих в процессе деления тяжелого ядра на более легкие ядра (осколки) и имеющих возможность участвовать в дальнейшем процессе деления тяжелых ядер.

Основными частями ядерного реактора любого типа являются:

1) активная зона , где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия;

2) отражатель нейтронов , который окружает активную зону и способствует уменьшению утечки нейтронов из активной зоны путем их отражения обратно в зону. Материалы отражения должны обладать малой вероятностью захвата нейтронов, но большой вероятностью их упругого рассеивания;

3) теплоноситель – используется для отвода тепла из активной зоны;

4) система управления и регулирования цепной реакции ;

5) система биологической защиты (радиационной защиты), предохраняющая обслуживающий персонал от вредного действия ионизирующего излучения.

В ядерных реакторах на медленных нейтронах активная зона, кроме ядерного топлива, содержит замедлитель быстрых нейтронов, образующихся при цепной реакции деления атомных ядер. Применяют замедлители (графит), а также органические жидкости и воду, которые одновременно могут служить и теплоносителем. Если замедлителя в активной зоне нет, то основная часть деления ядер происходит под влиянием быстрых нейтронов с энергией больше 10 кэВ. Реактор без замедлителя – реактор на быстрых нейтронах – может стать критическим лишь при использовании природного урана, обогащенного изотопом U до концентрации около 10%.

В активной зоне реактора на медленных нейтронах расположены тепловыделяющие элементы, содержащие смесь U и U и замедлитель, в котором нейтроны замедляются до энергии около 1 эВ. Тепловыделяющие элементы (ТВЭЛы) представляют собой блоки из делящегося материала, заключенные в герметическую оболочку, слабо поглощающую нейтроны. За счет энергии деления тепловыделяющие элементы разогреваются и отражают энергию теплоносителю, который циркулирует в каналах.

К ТВЭЛам предъявляются высокие технические требования: простота конструкции; механическая устойчивость и прочность в потоке теплоносителя, обеспечивающая сохранение размеров и герметичности; малое поглощение нейтронов конструкционным материалом ТВЭЛа и минимум конструкционного материала в активной зоне; отсутствие взаимодействия ядерного топлива и продуктов деления с оболочкой ТВЭЛов, теплоносителем и замедлителем при рабочих температурах. Геометрическая форма ТВЭЛа должна обеспечить требуемое соотношение площади поверхности и объема и максимальную интенсивность отвода теплоты теплоносителем от всей поверхности ТВЭЛа, а также гарантировать большую глубину выгорания ядерного топлива и высокую степень удержания продуктов деления. ТВЭЛы должны обладать радиационной стойкостью, простотой и экономичностью регенерации ядерного топлива и низкой стоимостью, иметь требуемые размеры и конструкцию, обеспечивающие возможность быстрого проведения перегрузочных операций.


В целях безопасности надежная герметичность оболочек ТВЭЛов должна сохраняться в течение всего срока работы активной зоны
(3–5 лет) и последующего хранения отработавших ТВЭЛов до отправки на переработку (1–3 года). При проектировании активной зоны необходимо заранее установить и обосновать допустимые пределы повреждения ТВЭЛов (количество и степень повреждения). Активная зона проектируется таким образом, чтобы при работе на протяжении всего его расчетного срока службы не превышались установленные пределы повреждения ТВЭЛов. Выполнение указанных требований обеспечивается конструкцией активной зоны, качеством теплоносителя, характеристиками и надежностью системы теплоотвода. В процессе эксплуатации возможно нарушение герметичности оболочек отдельных ТВЭЛов. Различают два вида таких нарушений: образование микротрещин, через которые газообразные продукты деления выходят из ТВЭЛа в теплоноситель (дефект типа газовой плотности); возникновение дефектов, при которых возможен прямой контакт топлива с теплоносителем.

Управление цепной реакцией осуществляется специальными управляющими стержнями, изготовленными из материалов, сильно поглощающих нейтроны (например, бор, кадмий). Изменяя количество и глубину погружения управляющих стержней, можно регулировать нейтронные потоки, а следовательно, интенсивность цепной реакции и выработку энергии.

В настоящее время разработано большое количество различных моделей ядерных реакторов, которые различаются по виду ядерного топлива (уран, плутоний), по химическому составу ядерного топлива (уран, диоксид урана), по виду теплоносителя (вода, тяжелая вода, органические растворители и другие), по виду замедлителя (графит, вода, бериллий).

Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах . Реакторы, в которых большинство делений происходит в результате поглощения ядрами делящихся изотопов промежуточных нейтронов, называются реакторами на промежуточных (резонансных) нейтронах .

Наиболее распространенными на АЭС являются реакторы большой мощности канальные (РБМК) и (ВВЭР).

Активная зона РБМК диаметром 11,8 м и высотой 7 м представляет собой цилиндрическую кладку, состоящую из графитовых блоков – замедлитель. В каждого блоке имеется отверстие для технологического канала (всего 1700).

В каждом канале установлено два ТВЭЛа, имеющих форму полых трубок диаметром 13,5 мм и длиной 3,5 м, стенки которых толщиной 0,9 мм выполнены из циркониевого сплава. ТВЭЛы заполнены таблетками из диоксида урана, обогащенного до 2% U. Общая масса топлива в активной зоне РБМК составляет 190 т. В процессе работы реактора ТВЭЛы охлаждаются проходящими по технологическим каналам потоками теплоносителя (вода).

Принципиальная схема реактора РБМК-1000 показана на рис. 7.

Рис. 7. Реактор большой мощности канальный на тепловых нейтронах

1 - турбогенератор; 2 - стержни управления; 3 - барабаны-сепараторы;

4 - конденсаторы; 5 – графитовый замедлитель; 6 – активная зона;

7 - твэлы; 8 – защитная оболочка из бетона

Для управления цепной ядерной реакцией, происходящей в ТВЭЛах, в специальные каналы вводятся регулирующие и управляющие стержни, выполненные из кадмия или бора, которые хорошо поглощают нейтроны. Стержни свободно перемещаются по специальным каналам. Глубина погружения регулирующего стержня определяет степень поглощения нейтронов. По периферии активной зоны расположен слой отражателя нейтронов – те же графитовые блоки, но без каналов.

Графитовая кладка окружена цилиндрическим стальным баком с водой, который предназначен для биологической защиты от нейтронов и гамма-излучений. Кроме того, реактор размещается в бетонной шахте размером 21,6´21,6´25,5 м.

Таким образом, основными элементами РБМК являются тепловыделяющие элементы, заполненные ядерным топливом, заменитель и отражатель нейтронов, теплоноситель и регулирующие стержни, служащие для управления развитием ядерной реакции деления.

Принцип работы АЭС с реактором типа РБМК состоит в следующем. Появляющиеся в результате деления ядер U вторичные быстрые нейтроны выходят из ТВЭЛов и попадают в графитовый замедлитель. В результате прохождения по замедлителю они теряют значительную часть своей энергии и, уже являясь тепловыми, вновь попадают в один из соседних ТВЭЛов и участвуют в дальнейшем процессе деления ядер U. Энергия цепной ядерной реакции выделяется в виде кинетической энергии «осколков» (80%), вторичных нейтронов, альфа-, бета-частиц и гамма-квантов, в результате чего происходит разогрев ТВЭЛов и графитовой кладки замедлителя. Теплоноситель, в качестве которого используется вода, двигаясь в технологических каналах снизу вверх под давлением около 7 МПа, охлаждает активную зону реактора. В результате происходит нагрев теплоносителя до температуры 285°С на выходе из реактора.

Далее пароводяная смесь транспортируется по трубопроводам в сепаратор, служащий для отделения воды от пара. Отсепарированный насыщенный пар под давлением попадает на лопасти турбины, связанной с генератором электрического тока.

Отработанный пар направляется в технологический конденсатор, конденсируется, смешивается с теплоносителем, поступающим из сепаратора, и под давлением, создаваемым циркуляционным насосом, вновь поступает в технологические каналы активной зоны реактора.

Преимущество таких реакторов являются возможность замены ТВЭЛов без остановки реактора и возможность поканального контроля состояния реактора. К недостаткам реакторов РМБК следует отнести низкую стабильность работы на малых уровнях мощности, недостаточное быстродействие системы управления защиты и использование одноконтурной схемы, в которой имеется реальная возможность радиоактивного загрязнения турбогенератора.

Среди реакторов, работающих на тепловых нейтронах, наиболее широкое распространение во многих странах мира получили водо-водяные энергетические реакторы .

Реакторы этого типа состоят из следующих основных конструктивных элементов: корпуса с крышкой, в котором размещаются ТВЭЛы, собранные в кассеты; органы управления и защиты, тепловой экран, выполняющий одновременно роль отражателя нейтронов и биологической защиты (рис. 8).

Корпус ВВЭР представляет собой вертикальный толстостенный цилиндр из высокопрочной легированной стали высотой 12–25 м и диаметром 3–8 м (в зависимости от мощности реактора). Сверху корпус реактора герметично закрывается массивной стальной сферической крышкой.

Рис. 8. Принципиальная схема АЭС ВВЭР-1000:

1 – тепловой экран; 2 - корпус; 3 – крышка; 4 - трубопроводы первого контура;

5 - трубопроводы второго контура; 6 - паровая турбина; 7 - генератор;

8 - технологический конденсатор; 9 , 11 – циркуляционные насосы;

10 - парогенератор; 12 - твэлы

Корпус реактора установлен в бетонной оболочке, являющейся одним из барьеров радиационной защиты. Принцип работы АЭС с серийным водо-водяным реактором электрической мощностью 440 МВт (ВВЭР-440) состоит в следующем. Теплоотвод от активной зоны ядерного реактора осуществляется по двухконтурной схеме. Теплоноситель (вода) первого контура, имеющий температуру 270°С, по трубопроводу подводится к активной зоне реактора под высоким давлением порядка 12,5 МПа, поддерживаемым циркуляционным насосом. Проходя по активной зоне, теплоноситель нагревается до 300°С (высокое давление в контуре не позволяет воде закипеть) и дальше поступает в парогенератор.

В парогенераторе теплоноситель первого контура отдает свое тепло так называемой питательной воде второго контура, находящейся под более низким давлением (приблизительно 4,4 МПа). Поэтому вода второго контура закипает и превращается в нерадиоактивный пар, который по пароводу подается на паровую турбину, связанную с генератором электрического тока. Отработанный пар охлаждается в технологическом конденсаторе, и под действием питательного насоса конденсат вновь поступает в парогенератор. Двухконтурная схема теплоотвода обеспечивает радиационную безопасность АЭС.

Перспективы развития ядерной энергетики в настоящее время связывают со строительством реакторов на быстрых нейтронах. Также реакторы наряду с выработкой электроэнергии позволяют осуществлять расширенное воспроизводство ядерного топлива, вовлекая в топливный цикл не только делящиеся тепловыми нейтронами U или Pu, но и U и Th (его содержание в земной коре примерно в 4 раза выше, чем природного урана).

В активной зоне реактора на быстрых нейтронах размещаются ТВЭЛы с высокообогащенным топливом. Активная зона окружается зоной воспроизводства, состоящей из ТВЭЛов, содержащих топливное сырье (обедненный уран, торий). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Особым достоинством быстрых реакторов является возможность организации в них расширенного воспроизводства ядерного топлива, т. е. одновременно с выработкой энергии можно производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

В активной зоне реактора на быстрых нейтронах отсутствует замедлитель, в связи с этим объем активной зоны реактора во много раз меньше, чем в РБМК или ВВЭР, и составляет примерно 2 м 3 . В качестве ядерного топлива в реакторах используется искусственно полученный Pu или высокообогащенный (более 20%) уран.

В активной зоне реактора БН-600 размещается 370 топливных сборок, в каждой из которых содержится по 127 ТВЭЛов и 27 стержней системы управления и аварийной защиты.

Для отвода тепловой энергии в активной зоне реактора БН-600 используется трехконтурная технологическая схема (рис. 9).

В первом и втором контурах в качестве теплоносителя используется жидкий натрий, температура плавления которого составляет 98°С, он обладает малой поглощающей и замедляющей способностью нейтронов.

Жидкий натрий первого контура на выходе из реактора имеет температуру 550°С и поступает в промежуточный теплообменник. Там он отдает теплоту теплоносителю второго контура, в качестве которого тоже используется жидкий натрий. Теплоноситель второго контура поступает в парогенератор, где происходит превращение в пар воды, являющейся теплоносителем третьего циркуляционного контура. Вырабатываемый в парогенераторе пар под давлением 14 МПа поступает в турбину электрогенератора. Отработанный пар после охлаждения в технологическом конденсаторе направляется насосом опять в парогенератор. Таким образом, схему теплоотвода на АЭС с реактором БН-600 составляют один радиоактивный и два нерадиоактивных контура. Время работы генератора БН-600 между перегрузками топлива составляет 150 суток.

Рис. 9. Технологическая схема АЭС с реактором на быстрых нейтронах:

1 – твэлы активной зоны; 2 – твэлы зоны воспроизводства; 3 – корпус реактора;

4 – бетонный корпус реактора; 5 – теплоноситель первого контура;
6 – теплоноситель второго контура; 7 – теплоноситель третьего контура;

8 – паровая турбина; 9 – генератор; 10 – технологический конденсатор;

11 – парогенератор; 12 – промежуточный теплообменник;

13 – циркуляционный насос

При эксплуатации АЭС, кроме проблем, связанных с захоро-нением высокорадиоактивных отходов ядерный топливный цикл (ЯТЦ), возникают дополнительные проблемы, которые обусловлены сроком службы ядерных реакторов (20–40 лет). После окончания этого срока службы реакторы необходимо выводить из эксплуатации, а из активной зоны их необходимо извлекать ядерное топливо, теплоноситель. Сам реактор консервируют или демонтируют. Опыт демонтажа отработанных ядерных реакторов в мире очень небольшой.


1. Общие сведения об атоме и атомном ядре. Явление радиоактивности.

2. Основной закон радиоактивного распада. Активность и единицы ее измерения.

3. Деление тяжелых ядер и цепная реакция деления.

4. Какой принцип работы ядерного реактора и их характеристики?

5. Приведите основные характеристики реакторов ВВЭР-1000 и РБМК-1000. В чем их отличие?

6. Основные характеристики реакторов на быстрых нейтронах БН-600.

ЛЕКЦИЯ 4. ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ,
ИХ ХАРАКТЕРИСТИКИ И ВЗАИМОДЕЙСТВИЕ