Закон пфлюгера физиология. Законы полярного раздражения возбудимых тканей постоянным током

Прочитайте:
  1. А - нормальная плетизмограмма; б - плетизмограмма при воздействии холода; в- плетизмограмма при воздействии тепла; 1- начало воздействия; 2- конец воздействия.
  2. ВЕНИ ГОЛОВИ ТА ШИЇ. ГРУДНА ПРОТОКА. ПРАВА ЛІМФАТИЧНА ПРОТОКА. ЛІМФАТИЧНІ ВУЗЛИ І СУДИНИ ГОЛОВИ ТА ШИЇ.
  3. Выносящие сосуды чревных л.у. впадают в поясничные л.у., кишечный ствол или цистерну грудного протока.
  4. Выраженность катодической депрессии и анодической экзальтации на разных участках нервного ствола при длительном действии постоянного подпорогового тока.
  5. Г) закон крутизны нарастания тока. Явление и механизм аккомодации.
  6. Действие постоянного подпорогового тока на возбудимые ткани (Пфлюгер, Вериго)
  7. Закономерности взаимодействия раздражителя с мембраной возбудимой клетки (закон «силы», закон «силы - длительности», полярность постоянного тока как раздражителя и др.)
  8. Закономерности наследования при моногибридном скрещивании. 1-й и 2-й законы Менделя, их цитологические основы.
  9. Законы и механизмы проведения возбуждения по нервным волокнам. Классификация и морфофизиологическая характеристика нервных волокон.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровнями возникает возбуждение.

При раздр. нерва или мышцы постоянным током возб-е возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом. Эти факты объединяют под названием полярного закона раздражения Пфлюгера. Полярный закон доказывается следующими опытами: Умерщвляют участок нерва под одним из электродов, а второй электрод устанавливают на неповрежденном участке. Если с неповрежденным участком соприкасается катод, возбуждение возникает в момент замыкания тока: если же катод устанавл-ют на поврежденном участке, а анод - на неповрежденном, возбуждение возникает только при размыкании тока. Порог раздражения при размыкании, когда возбуждение возникает под анодом, значительно выше, чем при замыкании, когда возбуждение возникает под катодом.

Постоянный ток близок к нервному импульсу, его применяют в медицине: рефлексотерапия, электропунктура. Законы были описаны в 1859 г Пфлюгером. 1. закон полярного действия постоянного тока 2. закон физиологического электротонуса. (Выявляет зависимость: в области катода при пропускании эл тока повышенная возбудимость и проводимость, а в области анода – пониженная.) Дополнения к закону: 1. если действует сильный ток, то вместо увеличения по анодом и катодом возбудимость и проводимость понижается – катотическая депрессия. Обеспечивает пресинаптическое торможение. 2. Не только под катодом и анодом меняется проводимость и возбудимость, но и вокруг полюсов Выделяют: Перекатэлектрон – повышение проводимости и возбудимости Переанэлектрон – понижение проводимости и возбудимости. 3. Закон сокращения. Эффект сокращения зависит от силы тока и направлении действий тока. По силе выделяют токи: -слабые пороговые средние -сильные По направлению: -восходящие -нисходящие

(изменения мембранного потенциала при действии на возбудимые ткани постоянного электрического тока).

Пфлюгер (1859)

Постоянный ток проявляет свое раздражающее действие только в момент замыкания и размыкания цепи.

При замыкании цепи постоянного тока возбуждение возникает под катодом; при размыкании по анодом.

Изменение возбудимости под катодом.

При замыкании цепи постоянного тока под катодом (действуют допороговым, но продолжительным раздражителем) на мембране возникает стойкая длительная деполяризация, которая не связана с изменением ионной проницаемости мембраны, а обусловлена перераспределением ионов снаружи (привносятся на электроде) и внутри – катион перемещается к катоду.

Вместе со смещением мембранного потенциала смещается и уровень критической деполяризации – к нулю. При размыкании цепи постоянного тока под катодом мембранный потенциал быстро возвращается к исходному уровню, а УКД медленно, следовательно, порог увеличивается, возбудимость снижается – катодическая депрессия Вериго. Таким образом, ввозникает только при замыкании цепи постоянного тока под катодом.

Изменение возбудимости под анодом.

При замыкании цепи постоянного тока под анодом (допороговый, продолжительный раздражитель) на мембране развивается гиперполяризация за счет перераспределения ионов по обе стороны мембраны (без изменения ионной проницаемости мембраны) и возникающее за ней смещение уровня критической деполяризации в сторону мембранного потенциала. Следовательно, порог уменьшается, возбудимость повышается – анодическая экзальтация.

При размыкании цепи мембранный потенциал быстро восстанавливается к исходному уровню и достигает сниженного уровня критической деполяризации, генерируется потенциал действия. Таким образом, возбуждение возникает только при размыкании цепи постоянного тока под анодом.

Сдвиги мембранного потенциала вблизи полюсов постоянного тока получили название электротонических.

Сдвиги мембранного потенциала не связанные с изменением ионной проницаемости мембраны клетки называют пассивными.

Изменение возбудимости клеток или ткани под действием постоянного электрического тока называется физиологическим электротоном.Соответственно различают катэлектрон и анэлектрон (изменение возбудимости под катодом и анодом).

12) Закон раздражения Дюбуа-Реймона (аккомодации):

Раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени.

При действии медленно нарастающегораздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации

При снижении скорости нарастания силы раздражителядо некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого -окончанию потенциала действия.

При медленном нарастании токана первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее.высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

При быстром нарастании стимулаповышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости.

Аккомодация возбудимых тканей

Раздражители характеризуются не только силой и длительностью действия, но и скоростью роста во времени силы воздействия на объект, т. е. градиентом.

Уменьшение крутизны нарастания силы раздражителя ведет к повышению порога возбуждения, вследствие чего, ответ биосистемы при некоторой минимальной крутизне вообще исчезает. Это явление названо аккомодацией.

Зависимость между крутизной нарастания силы раздражения и величиной возбуждения определена в законе градиента:реакция живой системы зависит от градиента раздражения: чем выше крутизна нарастания раздражителя во времени, тем больше до известных пределов величина функционального ответа.

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон "все или ничего", закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

1. Закон силы : чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость.

Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

2. Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). Закон был сформулирован Боудичем. По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Критика этого закона состоит в том, что во-первых, действие подпороговых раздражителей вызывает местный локальный ответ, хотя видимых изменений нет, но и «ничего» тоже нет. Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращений будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

3. Закон раздражения - Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. (Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает.


Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще).

Под градиентом раздражения понимают скорость нарастания силы раздражения до определенной величины. При очень медленном нарастании силы раздражителя порог возбудимости повышается и потенциал действия не возникает, т.е. аккомодация - это увеличение порога возбудимости при действии медленно нарастающей силе раздражителя. Дебуа-Реймон (1818-1896).

Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

4. Закон силы-длительности : раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер, которая называется кривая «силы-времени». Впервые была исследована эта кривая учеными Гоорвегом в 1892 г., Вейсом в 1901 г и Лапиком в 1909г. Из этого следует, что ток ниже некоторой минимальной величины (подпороговый) не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют.

Причиной такой зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Раздражитель, способный вызвать ответную реакцию, называется пороговым. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, названа Лапиком реобазой. Время, в течение которого действует ток, равный реобазе, и вызывает возбуждение, называется полезным временем. Это означает, что дальнейшее увеличение времени не имеет смысла для возникновения потенциала действия (ПД).

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия - минимальное время, в течение которого ток, равный двум реобазам, должен действовать на ткань, чтобы вызвать ответную реакцию. Определение хронаксии - хронаксиметрия - находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Хронаксия нервных и мышечных волокон равна тысячным долям секунд. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то происходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.

ПФЛЮГЕРА ЗАКОНЫ (Pfluger), предложенные П. в 1859 году, законы, устанавливающие зависимость фнкц. изменений в тканях тела от силы и направления действующего на них постоянного электрического тока. Законы эти могут быть сформулированы так: 1) при замыкании тока волна возбуждения всегда возникает только на катоде, 2) во время пропускания через ткань тока возбудимость повышена на катоде и понижена на аноде, 3) при размыкании тока понижение возбудимости на аноде сменяется рождающейся здесь волной возбуждения, 4) при размыкании же тока возбудимость на катоде оказывается пониженной и 5) интенсивность полярных влияний тока зависит от его силы. Катэлектротонусом называют происходящие под катодом изменения в сторону повышения возбудимости, анэлектротону-сом - изменения под анодом в сторону падения возбудимости. Пфлюгер дал для 1-го и 3-го из своих законов также и следующую формулировку: ткань возбуждается или возникновением катэлектротонуса или исчезновением ан-электротонуса. Если к двигательному нерву мышцы приложить электроды постоянного тока, то в зависимости от того, будет ли на пути волны возбуждения участок с пониженной возбудимостью, мы будем наблюдать сокращение мышцы (+) или же последнее не будет иметь места (-) (см. таблицу). Сила тока Нисходящий ток * Восходящий ток ** Замыкание Размыкание Замыкание Размыкание + + + + + + + + * Катод ближе к мыши е. ** Анод бл ише к л 1ышце. После Пфлюгера были внесены добавления в его законы; так, Вериго доказал, чтю при длительном действии тока повышение возбудимости на катоде сменяется падением возбудимости, могущим вызвать непроводимость и смерть нерва. Перна показал, что вторичное понижение возбудимости на катоде может рассматриваться"как парабиоз (см.). Введенский нашел у что на значительном расстоянии от первичных полюсов устанавливаются вторичные с обратг- юа ными знаками (периэлектротонические явления). Существующие теории кат- и анэлектро-тонуса, объясняющие наблюдаемые явления с точки зрения переноса токов (Леб, Лазарев) или изменения концентрации гипотетической фибриловой к-ты (Бете), не дают пока возможности правильно истолковать явления воздействия электрич. тока на ткани и тем подойти к кардинальнейшему вопросу современной физиологии-сущности явлений возбуждения и торможения.Г. Конради.

Смотрите также:

  • ПЫЛЕСОС , аппарат, служащий для удаления пыли с поверхностей или собирания ее в целях исследования запыленности воздуха путем его аспирации. П. бывают переносные, перевозимые на тележках и стационарные. Различаются системы, работающие...
  • ПЫЛЬ . Пыль атмосферная. П.-измельченное состояние какого-нибудь твердого вещества в виде частиц, не связанных или весьма слабо связанных друг с другом механически. Эти частицы б. или м. легко поднимаются в воздух, ...
  • ПЬЕЗОЭЛЕКТРИЧЕСТВО (от греч. piezo- давлю), электризация кристаллов под действием давления или растяжения. Явления П., открытые Аюи (Наиу) в 1817 г., наблюдаются в наиболее простой и ясной форме в кристаллах, обладающих...
  • ПЬЯВКИ , применяющиеся с мед. целями, принадлежат к типу кольчатых червей (Annelida), классу Hirudinea, отряду Gnathobdellida. Живут в пресных стоячих водах (болота, пруды, канавы). Продолжительность жизни-несколько лет. Для кровоизвлечения пригодны многие...
  • ПЯТАЯ БОЛЕЗНЬ , острая инфекционная б-нь по преимуществу детского возраста, которая характеризуется пятнисто-папулезной сыпью и почти полным отсутствием общих явлений; сыпь при своем развитии дает чрезвычайно изменчивую, разнообразную картину, образуя кольца, гирлянды...

В начале второй половины XIX века Пфлюгером были сформулированы закономерности действия постоянного тока на возбудимые ткани. В основном они сводятся к следующему. Возбуждение возникает в момент включения тока под катодом, а в момент выключения - под анодом, причем для получения возбуждения под анодом нужна большая сила тока, чем при замыкании под катодом. Этот закон полярного раздражения легко демонстрируется рядом опытов.

Мышцу посередине туго перевязывают до полной, потери проводимости. К обоим ее концам, соединенным с регистрирующими приборами, прикладывают электроды от источника постоянного тока. При замыкании цепи сокращается половина мышцы, соединенная с катодом, а при размыкании - половина, соединенная с анодом.

На нерве полярное раздражение иллюстрирует следующий опыт. Нерв перевязывают настолько туго, что в этом участке физиологическая проводимость полностью прерывается. По обе стороны перевязанного участка помещают электроды от источника постоянного тока. Мышца сокращается при замыкании цепи, если ближе к пей, расположен катод, и при размыкании цепи, если ближе анод.

Однако действие постоянного тока не ограничивается только кратковременными эффектами во время замыкания и размыкания цепи.

Этот же автор показал, что ток действует в течение всего времени прохождения через ткань. Под катодом возбудимость повышается и держится все время. После выключения тока возбудимость на очень короткое время становится ниже исходного. Под анодом возбудимость в течение всего времени прохождения тока понижается, после размыкания цепи кратковременно повышается и вскоре достигает исходного уровня.

Описанные под электродами изменения возбудимости Пфлюгер назвал электротоном. Изменения, наблюдаемые под катодом, получили название катэлектротона, а под анодом - анэлектротона.

Между тем В. Ф. Вериго еще в 1883 г. показал, что повышение возбудимости под катодом держится очень короткое время, после чего наступает понижение возбудимости (католическая ). Чем больше сила тока, пропускаемого через возбудимую ткань, тем резче выражена депрессия. Вывод же Пфлюгера, как показал В. Ф. Вериго, обусловлен ошибочной постановкой опыта: при определении порога происходила суммация физических эффектов, полученных от катода поляризующего тока и тока тестирующего, с помощью которого определялась возбудимость исследуемого нерва. Дальнейшие исследования в этом направлении полностью подтвердили данные В. Ф. Вериго (Erlanger, Blair, 1938; Lorente de No, 1949). Было установлено, что тотчас же после включения тока допороговои силы возбудимость под катодом круто возрастает и в течение 1-2 мс достигает некоторого уровня, на котором держится очень недолго, после чего начинает падать (тем круче, чем сильнее ток). Это падение возбудимости обусловлено адаптацией, т. е. процессом, направленным в сторону ослабления тех изменений, которые вызвал ток.

Под анодом (Парак, 1940) возбудимость сразу же падает, достигает в течение 1 мс минимума, после чего начинает повышаться, не достигая, однако, исходной величины. Чем сильнее ток, тем резче выражены эти изменения.

Особого внимания заслуживает то обстоятельство, что на нерве, находящемся в условиях нормального кровообращения, наблюдается только понижение возбудимости, последующего же относительного повышения не наступает.

Как уже выше было указано, согласно классическому представлению об электротоне, при размыкании цепи под катодом возбудимость на короткое время понижается, а под анодом - повышается. Однако и эти положения, по нашему мнению, являются ошибочными и нуждаются в соответствующей поправке. В обоих случаях Пфлюгером и другими авторами не учтено явление Пельтье, сущность которого сводится к следующему. Если к двум участкам тела приложить два электрода от источника постоянного тока и пропустить ток (даже в течение очень короткого времени), а после выключения его быстро (с помощью переключателя) соединить их с микроамперметром, то по второй цепи пойдет ток обратного направления.

Дальнейшее изучение этого феномена показало, что при прохождении тока через тело ткани под анодом становятся положительно заряженными, а под катодом- отрицательно заряженными. При выключении тока разноименно заряженные участки тела становятся источником электродвижущей силы обратного направления. Она то и была описана Пельтье (Peltier).