Практическое применение теории бифуркаций в технике. Бифуркация (теория колебаний)

а) Введение в теорию бифуркаций

Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом – хаос. Такого рода изменения и называются бифуркациями.

В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка:

Типичная бифуркация симметричного положения равновесия в такой системе(«трезубец») изображена на рис. 1. Она состоит в том, что от теряющего устойчивость симметричного положения равновесия ответвляется два новых, менее симметричных, положения равновесия. При этом симметричное положение равновесия сохраняется, но теряет устойчивость.

Основы математической теории бифуркаций были созданы А. Пуанкаре и A. M. Ляпуновым в начале ХХ века, а затем развиты некоторыми школами. Теория бифуркаций находит приложения в разных науках, начиная от физики и химии, заканчивая биологией и социологией.

Происхождение термина бифуркация (от лат. bifurcus - раздвоенный) связано с тем фактом, что динамическая система, поведение которой в равновесной области описывается системой линейных дифференциальных уравнений, имеющих единственное решение, при изменении параметров до некоторого критического значения, достигает так называемой точки бифуркации – точки ветвления возможных путей эволюции системы.

Этот момент (точка ветвления) соответствует переходу системы в неравновесное состояние, а на уровне математического описания ему соответствует переход к нелинейным дифференциальным уравнениям и ветвление их решений.

Бифуркацией называется приобретение нового качества эволюции (в движении) динамической системы при малом изменении ее параметров. Бифуркация соответствует перестройке характера движения или структуры реальной системы (физической, химической, биологической и т. д.).

С позиций математики, бифуркация – это смена топологической структуры разбиения фазового пространства динамической системы на траектории при малом изменении ее параметров.


Это определение опирается на понятие топологической эквивалентности динамических систем: две системы топологически эквивалентны, если они имеют одинаковую структуру разбиения фазового пространства на траектории, если движения одной из них могут быть сведены к движениям другой непрерывной заменой координат и времени.

Примером такой эквивалентности служат движения маятника при разных величинах коэффициента трения k: при малом трении траектории на фазовой плоскости имеют вид скручивающихся спиралей, а при большом – парабол (рис. на следующем слайде)

Переход от фазового портрета а к б не представляет собой бифуркации, поскольку бифуркации – это переход от данной системы к топологически неэквивалентной.

Пример: В математической модели возникновению ячеек Бенара соответствует бифуркация рождения новых состояний равновесия (соответствующих ячеистой структуре).

Среди различных бифуркаций при анализе моделей физических систем особенно интересны, так называемые, локальные – это бифуркации, при которых происходит перестройка отдельных движений динамической системы.

Простейшими и наиболее важными из них являются:

бифуркации состояний равновесия (ячейки Бенара)

бифуркации периодических движений.

Заключение. Важные черты бифуркации

Бифуркации, в результате которых исчезают статические или периодические режимы (то есть состояния равновесия или предельные циклы), могут приводить к тому, что динамическая система переходит в режим стохастических колебаний.

В приложениях теории бифуркаций ставится задача – для каждой конкретной ситуации найти аналитические выражения для вариантов решений уравнений, возникающих в точках бифуркации, а также определение значений параметров, при которых начинается ветвление решений уравнений. Предварительно необходимо провести анализ устойчивости системы и поиск точек ее неустойчивости. Методы этого анализа основаны на теории устойчивости, они достаточно подробно разработаны и носят чисто технический характер.

В теории бифуркаций описано большое число бифуркационных ситуаций. В развитии реальных природных систем могут наблюдаться не отдельные бифуркации, а целые каскады бифуркаций (классическим примером может служить возникновение турбулентности и других гидродинамических неустойчивостей). Кроме того, различают бифуркации и катастрофы. Существует даже теория катастроф. Однако, анализ связей и различий между ними выходит за пределы данного учебного пособия.

Очень важная черта бифуркаций: В момент времени, когда система находится вблизи точки бифуркации, огромную роль начинают играть малые возмущения значений ее параметров. Эти возмущения могут носить как чисто случайный характер, так и быть целенаправленными. Именно от них зависит, по какой эволюционной ветви пойдет система, пройдя через точку бифуркации. То есть, если до прохождения точки бифуркации, поведение системы подчиняется детерминистским закономерностям, то в самой точке бифуркации решающую роль играет случай.

Вследствие этого, по словам И. Пригожина, мир становится «загадочным, непредсказуемым, неконтролируемым». В определенном отношении это так. Но полностью с этим высказыванием нельзя согласиться, поскольку для любой системы в точке бифуркации имеется не произвольный, а вполне определенный набор путей эволюции. Поэтому даже если работает случайность, то она работает в строго определенном поле возможностей. И, следовательно, говорить о полной неопределенности и, тем более, полной загадочности некорректно. Что же касается неконтролируемости, то, конечно, говорить о тотальном контроле не имеет смысла, но в некоторых процессах возможно вмешательство как подталкивание к желаемым вариантам развития.

4. ХАОС

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям; поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной; примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными.

Динамический хаос - явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

Так как начальное состояние физической системы не может быть задано абсолютно точно (например, из-за ограничений измерительных инструментов), то всегда необходимо рассматривать некоторую (пусть и очень маленькую) область начальных условий. При движении в ограниченной области пространства экспоненциальная расходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области. После такого перемешивания бессмысленно говорить о координате частицы, но можно найти вероятность ее нахождения в некоторой точке.

Детерминированный хаос - сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

Обзор

Бифуркация - это приобретение нового качества в движениях динамической системы при малом изменении её параметров.

Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой . В противном случае, если такой окрестности не существует, то система называется негрубой .

Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой .

Основные методы теории бифуркаций - это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

Бифуркация равновесий

В механических системах, как правило, установившиеся движения (положения равновесия или относительного равновесия) зависят от параметров . Значения параметров, при которых наблюдается изменение количества равновесий, называются их бифуркационными значениями . Кривые или поверхности, изображающие множества равновесий в пространстве состояний и параметров, называются бифуркационными кривыми или бифуркационными поверхностями . Прохождение параметра через бифуркационное значение, как правило, сопровождается изменением свойств устойчивости равновесий. Бифуркации равновесий могут сопровождаться рождением периодических и других, более сложных движений.

Основные понятия

См. также

Литература

  1. Андронов А. А., Леонтович Е. А., Гордон И. М., Майер А. Г. Теория бифуркаций динамических систем на плоскости. М .: Наука, 1967.
  2. Баутин Н. Н., Леонтович Е. А. Методы и приёмы качественного исследования динамических систем на плоскости. М .: Наука. Гл. ред. физ.-мат. лит., 1990. 488 с. (Справочная математическая библиотека.)
  3. Четаев Н. Г. Устойчивость движения. М .: Наука. 1955.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теория бифуркаций" в других словарях:

    Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    У этого термина существуют и другие значения, см. Теория катастроф (значения). Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких… … Википедия

    Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

    Основная статья: Теория бифуркаций Каскад бифуркаций (Последовательность Фейгенбаума или сценарий удвоения периода) один из типичных сценариев перехода от порядка к хаосу, от простого периодического режима к сложному апериодическому при… … Википедия

    Совокупность приложений теории особенностей дифференцируемых (гладких) отображений X. Уитни (Н. Whitney) и теории бифуркаций А. Пуанкаре (Н. Poincare) и А. А. Андронова. Назв. введено Р. Томом (R. Thorn) в 1972. К. т. применяется к геом. и физ.… … Физическая энциклопедия

    БИФУРКАЦИЯ, приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. 20 в., затем эта теория была развита А. А. Андроновым и учениками … Энциклопедический словарь

    - (от греч. katastrophe поворот, переворот), 1) совокупность приложений теории особенностей гладких (дифференцируемых) отображений и теории бифуркаций. Поскольку гладкие отображения встречаются повсеместно, повсеместно встречаются и их особенности … Естествознание. Энциклопедический словарь

    В Википедии есть статьи о других людях с такой фамилией, см. Юдович. Виктор Иосифович Юдович Дата рождения: 4 октября 1934(1934 10 04) Место рождения: Тбилиси, СССР Дата смерти … Википедия

    У этого термина существуют и другие значения, см. Ласточкин хвост. Ласточкин хвост (англ. swallow tail) нерегулярная поверхность в трёхмерном пространстве, определить которую можно несколькими эквивалентными способами. Рассмотрим… … Википедия

    Основная статья: Теория бифуркаций Постоянная Фейгенбаума универсальная постоянная, характеризующая бесконечный каскад бифуркаций удвоения периода при переходе к детерминированному хаосу (сценарий Фейгенбаума). Открыта Митчеллом… … Википедия

Во многих областях знаний (биология, география, педагогика) термин «бифуркация» обозначает «раздвоение», «разделение». В нелинейной динамике термин «бифуркация» трактуется более широко - это качественное изменение состояния системы при малом изменении управляющих параметров. Определение из Универсальной энциклопедии» Кирилла и Мефодия: Бифуркация, приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. XX века, затем эта теория была развита А.А. Андроновым и учениками. Знание основных бифуркаций позволяет существенно облегчить исследование реальных систем (физических, химических, биологических и др.), в частности предсказать характер новых движений, возникающих в момент перехода системы в качественно другое состояние, оценить их устойчивость и область существования.

В качестве примера рассмотрим простую механическую систему: шарик, катающийся по желобу, профиль которого определяется с помощью соотношения:

(8.1) у(х) = х 4 + ах 2 + bх

Соответствующий график, поясняющий рассматриваемую систему, представлен на рис. 8.1. Здесь х - переменная, которая однозначно определяет местоположение шарика (а, следовательно, состояние системы в рассматриваемый момент времени), а и b - управляющие параметры, определяющие профиль рассматриваемого желоба. При изменении величин управляющих параметров а и b изменяется профиль желоба, что влечет за собой изменение состояния системы - меняется местоположение равновесного состояния, шарик смещается в новое положение равновесия (происходит изменение величины переменной х ). Таким образом, меняя управляющие параметры а и b , мы можем изменять состояние системы.



Рис. 8.1. Шарик в потенциальной ямке (а = –0,8; b = 1). Координата х 0 определяет местоположение шарика, параметры а и b - профиль желоба

Все возможные значения управляющих параметров можно представить себе, как плоскость (а, b ), называемую плоскостью управляющих параметров. Любая точка на этой плоскости однозначно соответствует одному, вполне определенному виду профиля желоба, по которому катается шарик. И наоборот, любой желоб вида (8.1) может быть поставлен в соответствие точке на плоскости (а, b ). Если бы управляющих параметров было не два, а больше (например, три), то речь бы шла о пространстве параметров. Вернемся, однако, к понятию «бифуркация». Речь идет о том, что при малых изменениях значений управляющих параметров происходит качественное изменение состояния системы. Подчеркнем два важных момента: малые изменения значений управляющих параметров и качественное изменение состояния системы. Иными словами, всякое (малое) изменение управляющих параметров, конечно же, приводит к изменению состояния системы, но если отличия между начальным и конечным состояниями качественным образом не отличаются, то нельзя говорить о бифуркации.

Поясним сказанное на примере шарика в потенциальной ямке. На рис. 8.2 приведена плоскость управляющих параметров (а, b ), и в некоторых точках показан профиль желоба, по которому может кататься шарик. Из рисунка видно, например, что в точках 3 и 4 плоскости параметров профили желоба, конечно же, отличаются друг от друга, но это отличие носит количественный, а не качественный характер. Качественно же оба эти профиля подобны: они имеют один минимум, а, следовательно, одно состояние устойчивого равновесия. В то же самое время, на плоскости параметров существует область (ограниченная пунктирными линиями), в которой желоб имеет три состояния равновесия. Желоб имеет три точки, в которых шарик может находиться в состоянии равновесия; два из этих состояний устойчивы, а одно - неустойчивое.

Рис. 8.2. Плоскость управляющих параметров (а, b ) и вид потенциальной ямы в некоторых точках плоскости параметров

Если шарик будет находиться в состоянии неустойчивого равновесия (рис. 8.3), то любые сколь угодно малые воздействия на него (а такие воздействия рано или поздно обязательно реализуются) выведут шарик из этого состояния равновесия, и он скатится в одну из ямок - либо левую, либо правую. И в левой, и в правой ямках шарик будет находиться в состоянии устойчивого равновесия сколь угодно долго. В какую из двух этих ямок шарик попадет - определяется волей случая. Подобные системы, в которых возможно несколько устойчивых состояний (из которых реализуется, естественно, только одно), называются мультистабильными, а само явление - мультистабильностью.

Рис. 8.3. Система, находящаяся в состоянии неустойчивого равновесия. Незначительные воздействия на систему извне с неизбежностью приведут к тому, что система перейдет в устойчивое состояние равновесия

Понятно, что желоб с двумя ямками (и тремя состояниями равновесия) качественно отличается от желоба с одним состоянием равновесия. Переход от одного состояния к другому, качественно иному, как нетрудно догадаться, осуществляется на пунктирных линиях (см. рис. 8.2). Если на плоскости управляющих параметров достаточно близко «подойти» к пунктирной линии, то затем, слегка изменив управляющий параметр, можно пересечь эту линию, что приведет к качественной перестройке всей системы. Произойдет то, что и называется бифуркацией: качественное изменение состояния системы при малом изменении управляющих параметров. Линию, при пересечении которой происходит бифуркация, называют линией бифуркации, а значения параметров, при которых наблюдается бифуркация - бифуркационными параметрами.

Рассмотрим теперь суть происходящих явлений с точки зрения шарика, который находится в желобе. Пусть управляющие параметры а и b медленно изменяются в соответствии с тем, как это показано стрелкой на рис. 8.4. В соответствии с изменением управляющих параметров, профиль желоба непрерывно изменяется. В точке 1 плоскости параметров желоб имеет одно устойчивое состояние равновесия, в котором и находится шарик. При пересечении пунктирной линии в точке 2 у желоба возникает еще один минимум и один максимум, т.е. появляются еще два состояния равновесия, одно из которых устойчивое (минимум), а другое - нет. По мере дальнейшего движения по плоскости параметров по указанному маршруту второй минимум становится все более глубоким (точка 3) и при достижении точки 4 глубина обеих ямок желоба оказывается одинаковой. В этом случае оба состояния равновесия «равноправны». Заметим, однако, что шарик до сих пор даже «не заметил» появления второго состояния равновесия, в котором он вполне мог бы находиться. Для шарика почти ничего не изменилось: он как находился в ямке, так и продолжает там оставаться. Да, с изменением управляющих параметров изменяется координата х 0 равновесного состояния, а, следовательно, и координата местонахождения шарика, но это изменение столь незначительное, что шарик не придает ему особого значения. Плавные, малые изменения незаметны и кажутся неважными.

Рис. 8.4. Изменение состояния системы при движении по плоскости параметров в направлении, показанном стрелкой

Действительно, задумываемся ли мы каждое утро над тем, что стали на день старше? Обращаем ли мы внимание на то, что 15 января продолжительность дня была 7 ч 39 мин, а 16 января - 7 ч 42 мин? Замечаем ли осенним днем, что листья стали еще чуть-чуть желтее, чем были накануне? Так незаметно накапливаются малые изменения, на которые мы не обращаем внимания. Малое изменение координаты состояния равновесия от точки к точке при движении по плоскости управляющих параметров - вещь столь незначительная и неважная, что шарик не обращает на это никакого внимания. Наверное, шарику вполне могло бы показаться интересным и важным появление второго возможного состояния, в котором он мог бы находиться, но это второе состояние остается невидимым для шарика, оно скрыто от него высокими стенками желоба, и шарик о его существовании просто-напросто не догадывается.

Продолжим движение по плоскости управляющих параметров. В точке 5 глубина второго, «альтернативного» минимума превосходит глубину того минимума, в котором находится шарик, да и ширина второго минимума тоже больше, чем ширина первого. Понятно, что второе устойчивое состояние равновесия теперь уже более предпочтительно, нежели первое. Тем не менее, шарик по-прежнему «живет» в первом состоянии равновесия, и для него по-прежнему, по большому счету, ничего не изменилось. Второе состояние равновесия по-прежнему для него невидимо. Хотя теперь шарик может, если обратит внимание, по косвенным признакам определить, что в системе что-то изменилось: стали не столь крутыми стенки ямки, в которой он находится, да и глубина ямки, кажется, стала поменьше. Но сможет ли шарик за этими незначительными изменениями (которые являются предвестниками дальнейших событий) увидеть нечто более серьезное, чем некоторое изменение окружающей его среды, сможет ли он понять, что его теперешнее состояние равновесия находится под угрозой, зависит от его, шарика, «прозорливости». В подобной простой механической системе, наверное, это не очень сложно, особенно если у шарика есть некоторый опыт, т.е. если он несколько раз уже бывал в подобных ситуациях. Ведь еще небольшое движение, незначительное изменение управляющих параметров, и состояние равновесия, в котором очень долгое время находился шарик, исчезнет (точка 6), и шарик будет переброшен в совершенно иное состояние.

Приведем другой классический пример бифуркации, рассмотренный еще великим Эйлером. Нам понадобится измерительная линейка, тонкий столовый нож, полотно от ножевки, длинная пластмассовая расческа и т.п. Поставьте ее вертикально на твердое основание, а сами, обезопасив руку от травмы, начинайте давить на нее вниз (рис. 8.5). Увеличивая усилие F , вы обнаружите, что при F бо льших некоторого значения F b полоска не сохраняет первоначальную прямолинейную форму (рис 8.5а) - это состояние теряет устойчивость, а вместо него возможно одно из двух других состояний (1 или 2 на рис 8.5б), когда полоска искривлена. Причем, какое состояние установится, зависит от разных незначительных факторов (первоначальной деформации полоски, отклонением от вертикали приложенной силы, вибрациями и т.п.). Здесь F - управляющий параметр, F b - его бифуркационное значение.

Рис. 8.5. Опыт с линейкой: а) состояние линейки до бифуркации (величина F меньше бифуркационного значения); б) два возможных устойчивых состояния, в которые переходит система при превышении силой F бифуркационного значения F b ; в) соответствующая бифуркационная диаграмма

Происходящее в рассмотренной системе удобно иллюстрировать с помощью графиков (рис. 8.5в, где х - отклонение средней точки полоски от вертикали) - бифуркационных диаграмм. На рисунке по горизонтали отложены значения параметра, а по вертикали соответствующие им значения переменной, установившиеся в системе (т.е. это - и не фазовая плоскость и не плоскость параметров, а нечто комбинированное). На диаграмме видно, что вместо одного состояния, отмеченного цифрой 0, после бифуркации существуют и могут быть реализованы на практике состояния 1 и 2. Что касается состояния 0, то оно продолжает в принципе существовать и при значениях F , бо льших бифуркационного, но не может быть практически реализовано из-за его неустойчивости.

Понятно, что события, подпадающие под определение «бифуркация» (качественное изменение состояния системы при малых изменениях управляющих параметров), вполне можно отыскать и в социальных системах. Примером может служить революция, коренным образом перестраивающая привычную жизнь человеческого общества. Возможны и менее «глобальные» примеры. Человек работает-работает где-либо, и вдруг ни с того ни с сего, вроде бы из-за пустяка говорит: «А гори она огнем, вся эта шарага» и пишет заявление об увольнении. Система переходит в другое, качественно иное состояние.

Следует, однако, отметить следующий аспект: социальные системы чрезвычайно сложны, и поэтому следует помнить о том, что применять существующие в нелинейной динамике понятия к подобным системам (в том числе и понятия «бифуркация», «мультистабильность») следует с осторожностью, памятуя о том, что простой механический перенос может привести к ошибкам, а порой и к фальсификации. Когда речь идет о шарике в потенциальной яме, совершенно понятно, о каких возможных состояниях системы идет речь, какие из них устойчивые, какие нет, наконец, какое состояние реализуется в настоящий момент времени. Но что понимать под возможными состояниями социальной системы? Реализующееся состояние в данный момент времени - единственное, про остальные состояния, «существуют» они (точнее говоря, могли ли они осуществиться вместо теперешнего) или нет, остается только гадать, и наши догадки останутся догадками, о достоверности которых мы тоже можем делать свои заключения, но не более. Понятие «мультистабильность», по всей видимости, может быть применено к социальными системам, но вот «экспериментально» проверить существование мультистабильности в социальных системах, наверное, невозможно. Невозможно показать, что для какого-либо фиксированного момента времени (например, сегодняшнего) помимо того состояния, которое реализуется, «существует» еще одно (или несколько) альтернативных состояний, каждое из которых могло с той или иной вероятностью реализоваться. Предполагать это можно, но экспериментально проверить - нет. И конечно, «увидеть», «почувствовать», что социальная система приближается к точке бифуркации, за которой возникнет качественно другое состояние, существенно сложнее. И если мы видели, что шарик, находящийся в потенциальной ямке, практически до самого последнего момента не «видит» надвигающейся бифуркации (и перехода системы в иное состояние), что говорить о людях и о социальных системах. Н.С. Хрущев, например, не заметил приближение системы к точке бифуркации, отправляясь из отпуска на Пленум ЦК в октябре 1964 года, по результатам которого он был освобожден от должности Первого секретаря ЦК и выведен из состава Президиума, а на следующий день - от должности Председателя Совета Министров СССР. И Гай Юлий Цезарь в 44 году до н.э. также не заметил надвигающейся бифуркации, за что поплатился жизнью.

Обратим внимание еще на один важный аспект, связанный с понятием «бифуркация». В тот момент, когда система (по параметрам) находится вблизи точки бифуркации, очень большую роль начинают играть малые возмущения. Эти возмущения могут носить случайный характер или могут быть целенаправленными, но их роль существенно возрастает. Вернемся к шарику в потенциальной ямке и рассмотрим два состояния системы: вдали и вблизи от точки бифуркации (рис. 8.6). Видно, что когда система находится вдали отточки бифуркации, малые воздействия на нее не приводят к существенным изменениям ее состояния: шарик остается в том же самом положении, как и раньше. Для того чтобы «перебросить» систему в другое возможное состояние, необходимо приложить гораздо бо льшие усилия. В то же самое время, когда система находится вблизи точки бифуркации, даже малого воздействия (которого раньше система просто-напросто не заметила бы) достаточно, чтобы перевести систему из одного состояния в другое.

Рис. 8.6. Система «шарик в потенциальной ямке» вдали и вблизи от точки бифуркации

Итак, вблизи точки бифуркации малые воздействия на систему могут привести к несоизмеримо большим «откликам». Еще одним фактором, который может привести к изменению состояния системы, является малое изменение управляющих параметров. Если система близка к точке бифуркации, то легкое «шевеление» управляющих параметров может привести к тому, что система окажется уже за границей бифуркации (как говорят, в закритической области), и система сама, уже безо всяких внешних воздействий, перейдет в новое состояние. На примере шарика в желобе, после пересечения бифуркационной линии в точке 6 (см. рис. 8.4), устойчивое состояние равновесия, в котором до этого момента находился шарик, сливается с неустойчивым и исчезает, а, следовательно, шарику ничего более не остается, как «перейти» к другому состоянию равновесия.

Примеров подобному поведению систем вблизи линии бифуркации много. По всей видимости, ряд операций на финансовых и фондовых рынках также можно использовать в качестве примера. Организованные действия группы лиц, заинтересованных в проведении той или иной финансовой операции, проведенные в нужный момент, приводят к тому, что либо на систему, находящуюся около состояния бифуркации, оказывается воздействие, выводящее ее из состояния равновесия, либо происходит малое шевеление управляющих параметров, и система оказывается в закритической области. В результате происходит переход системы в новое состояние, например, контрольный пакет акций оказывается у заинтересованного лица. Но если подобную операцию проводить в тот момент, когда система далека от состояния бифуркации, можно затратить большие средства, но желаемого результата не достичь.

Таким образом, воздействуя на систему, находящуюся вблизи бифуркационного состояния, можно добиться кардинальных изменений. Другое дело, что социальные системы - это не шарик в желобе. Определить, когда система приближается к точке бифуркации - сложная задача. Но не менее сложная и не менее важная задача, если возникает желание управлять подобным образом социальными системами, - это определить, в какое состояние перейдет система после того, как она покинет состояние равновесия.

Не стоит, однако, думать, что бифуркация - это всегда какое-либо резкое изменение, когда система изменяется до неузнаваемости. Пример бифуркации с сосуществующими положениями равновесия, описанный выше - один из самых простых. Вообще, в теории бифуркаций существует достаточно большое число различных типов бифуркационных ситуаций. Так, например, различают бифуркации и катастрофы; существует даже теория катастроф. Следует подчеркнуть, что бифуркации могут происходить плавно, подчас незаметно. Пересечение пунктирной линии в точке 2 на рис. 8.4 приводит к тому, что система качественно изменяется (меняется число возможных устойчивых состояний равновесия в системе), следовательно, происходит бифуркация. Однако, как уже говорилось, шарик, находящийся в другой ямке, не замечает произошедшей бифуркации. Другой пример с той же самой системой приведен на рис. 8.7. При движении по плоскости управляющих параметров вдоль линии b = 0 в точке a = 0 происходит бифуркация, состояние системы качественно изменяется, однако это изменение происходит плавно, без «катаклизмов». Шарик может заметить, что в системе что-то изменилось, поскольку его координата х 0 вначале (до бифуркации) была равна нулю, а затем стала отличной от нуля. Однако это изменение произошло очень плавно, и ему можно не придать значение.

Рис. 8.7. Изменение состояния системы при движении по плоскости параметров вдоль линии b = 0 в направлении, указанном стрелкой

Но и в этом случае вблизи точки бифуркации малые воздействия на систему играют значительную роль. Именно эти воздействия определяют, в какую из ямок (левую или правую) попадет шарик. Именно эти ничтожные воздействия определяют, по большому счету, дальнейшую судьбу системы. В ситуации, изображенной на рис. 8.7, малые воздействия привели к тому, что шарик оказался в правой ямке. Если, после того как система уйдет от точки бифуркации, потребуется изменить состояние системы, потребуется перебросить шарик в другую ямку, то придется приложить усилия, несоизмеримо больше тех, которые в точке бифуркации определили выбор дальнейшей эволюции системы. Примером такой «мягкой», но заметной бифуркации могут являться демократические выборы. До того момента, пока не прошло голосование, на судьбу дальнейшего развития страны могут повлиять самые незначительные факторы (может быть, вплоть до прически кандидата). После того, как выборы состоялись, изменить что-либо гораздо сложнее.

Недавно опубликована статья И.Пригожина Кость еще не брошена. Послание будущим поколениям. В частности, он пишет следующее. «Будущее не дано нам заранее. Великий французский историк Фернанд Бродель однажды заметил: „События - это пыль". Правильно ли это? Что такое событие? Сразу же приходит аналогия с „бифуркациями", которые изучаются прежде всего в неравновесной физике. Эти бифуркации появляются в особых точках, где траектория, по которой движется система, разделяется на „ветви". Все ветви равно возможны, но только одна из них будет осуществлена. Обычно наблюдается не единственная бифуркация, а целая последовательность бифуркаций... С этой точки зрения история оказывается последовательностью бифуркаций».

Далее И. Пригожин подчеркивает, что за выбор ветви, которая возникает после точки бифуркации, отвечают флуктуации на микроскопическом уровне (они определяют событие, которое произойдет). В применении к обществу (по Пригожину такое применение - метафора) событие представляет собой возникновение новой социальной структуры после прохождения бифуркации, а флуктуации - следствие индивидуальных действий. Таким образом, событие имеет микроструктуру. В качестве примера И. Пригожин рассматривает революцию 1917 года в России, указывая, что конец царского режима мог принять различные формы. Он считает, что ветвь, по которой пошло развитие, была результатом действий «флуктуации», связанной с отсутствием дальновидности у царя, непопулярностью его жены, слабостью Керенского, насилием Ленина. Эта микроструктура и обусловила все последующие события.

«Мое послание будущим поколениям состоит, стало быть, в том, что кость еще не брошена, что ветвь, по которой пойдет развитие после бифуркации, еще не выбрана. Мы живем в эпоху флуктуаций, когда индивидуальное действие остается существенным... Я верю в возникновение необходимых флуктуаций, посредством которых те опасности, которые мы ощущаем сегодня, могли бы быть успешно преодолены».

Предисловие
Глава 1. Бифуркации положений равновесия
§ 1. Семейства и деформации
1.1. Семейства векторных полей
1.2. Пространство струй
1.3. Лемма Сарда и теоремы трансверсальности
1.4. Простейшие приложения: особые точки типичных векторных полей
1.5. Топологически нереальные деформации
1.6. Теорема сведения
1.7. Типичные и главные семейства
§ 2. Бифуркации особых точек в типичных однопараметрических семействах
2.1. Типичные ростки и главные семейства
2.2. Мягкая и жесткая потеря устойчивости
§ 3. Бифуркации особых точек в многопараметрических семействах общего положения при однократном вырождении линейной части
3.1. Главные семейства
3.2. Бифуркационные диаграммы главных семейств (3±)
3.3. Бифуркационные диаграммы (относительно слабой эквивалентности) и фазовые портреты главных семейств (4±)
§ 4. Бифуркации особых точек векторных полей с двукратным вырождением линейной части
4.1. Список вырождений
4.2. Два вулевых собственных значения
4.3. Редукции к двумерным системам
4.4. Нулевое и пара чисто мнимых собственных значений
4.5. Две чисто мнимых пары
4.6. Главные деформации уравнений трудного типа в задаче о двух мнимых парах (по Жолондеку)
§ 5. Показатели мягкой и жесткой потери устойчивости
5.1. Определевия
5.2. Таблица показателей
Глава 2. Бифуркации предельных циклов
§ 1. Бифуркации предельных циклов в типичных однопараметрических семействах
1.1. Мультипликатор 1
1.2. Мультипликатор -1 и бифуркация удвоения периода
1.3. Пара комплексно сопряженных мультипликаторов
1.4. Нелокальные бифуркации в однопараметрических семействах диффеоморфизмов
1.5. Нелокальные бифуркации периодических решений
1.6. Бифуркации распада инвариаитньйс торов
§ 2. Бифуркации циклов в типичных двупараметрических семействах при однократном дополнительном вырождении
2.1. Перечень вырождений
2.2. Мультипликатор 1 или -1 с дополнительным вырождением в нелинейных членах
2.3. Пара мультипликаторов на единичной окружности с дополнительным вырождением в нелинейных членах
§ 3. Бифуркации циклов в типичных двупараметрических семействах при сильных резоиансах порядка (?)
3.1. Нормальная форма в случае унипотентиой жордаиовой клетки
3.2. Усреднение в слоениях Зейферта и Мёбиуса
3.3. Главные поля и деформации
3.4. Версальиость главных деформаций
3.5. Бифуркации стационарных решений периодических дифференциальных уравнений при сильных резонансах порядка (?)
§ 4. Бифуркации предельных циклов при прохождении пары мультипликаторов через (?)
4.1. Вырожденные семейства
4.2. Вырожденные семейства, найденные аналитически
4.3. Вырожденные семейства, найденные численно
4.4. Бифуркации в невырожденных семействах
4.5. Предельвые циклы систем с симметрией четвертого порядка
§ 5. Конечногладкие нормальные формы локальных семейств
5.1. Обзор результатов
5.2. Определения и примеры
5.3. Общие теоремы и деформации нерезоиансных ростков
5.4. Приведение к линейной нормальной форме
5.5. Деформации ростков диффеоморфизмов типа Пуанкаре
5.6. Деформации одиорезоиансиых гиперболических ростков
5.7. Деформации ростков, векторных полей с одним нулевым собственным значением в особой точке
5.8. Функциональные инварианты диффеоморфизмов прямой
5.9. Функциональные инварианты локальных семейств диффеоморфизмов
5.10. Функциональные -инварианты семейств векторных полей
5.11. Функциональные инварианты топологической классификации локальных семейств диффеоморфизмов прямой (по Руссари)
§ 6. Универсальность Фейгенбаума для диффеоморфизмов и потоков
6.1. Каскад удвоений
6.2. Перестройки неподвижных точек
6.3. Каскад (?)-кратных увеличений периода
6.4. Удвоение в гамильтоновых системах
6.5. Оператор удвоения для одномерных "отображений
6.6. Механизм универсального удвоения для диффеоморфизмов
Глава 3. Нелокальные бифуркации
§ 1. Вырождения коразмерности 1. Сводка результатов
1.1. Локальные и нелокальные бифуркации
1.2. Негиперболнческие особые точки
1.3. Негиперболические циклы
1.4. Нетрансверсальиые пересечения многообразий
1.5. Контуры
1.6. Бифуркационные поверхности
1.7. Характеристики бифуркаций
1.8. Сводка результатов
§ 2. Нелокальные бифуркации потоков на двумерных поверхностях
2.1. Полулокальные бифуркации потоков на поверхностях
2.2. Нелокальные бифуркации на сфере; однопараметрический случай
2.3. Типичные семейства векторных полей
2.4. Условия типичности
2.5. Однопараметрические семейства на поверхностях, отличных от сферы
2.6. Глобальные бифуркации систем, с глобальной секущей на торе
2.7. Некоторые глобальные бифуркации на бутылке Клейна
2.8. Бифуркации иа двумерной сфере. Многопараметрический случай
2.9. Некоторые открытые вопросы
§ 3. Бифуркации гомоклинических траекторий негиперболической особой точки
3.1. Узел по гиперболическим переменным
3.2. Седло по гиперболическим переменным: одна гомоклиническая траектория
3.3. Топологическая схема Бернулли
3.4. Седло по гиперболическим переменным: несколько гомоклинических траекторий
3.5. Главные семейства
§ 4. Бифуркации гомоклинических траекторий4 иегиперболического цикла
4.1. Структура семейства гомоклииических траекторий
4.2. Критические и некритические циклы
4.3. Рождение гладкого двумерного аттрактора
4.4. Рождение сложных инвариантных множеств (некритический случай)
4.5. Критический случай
4.6. Двухшаговый переход от устойчивости к турбулентности
4.7. Некомпактное множество гомоклинических траекторий
4.8. Перемежаемость
4.9. Достижимость, недостижимость
4.10. Устойчивость семейств диффеоморфизмов
4.11. Некоторые открытые вопросы
§ 5. Гиперболические особые точки с гомоклинической траекторией
5.1. Предварительные понятия: ведущие направления и седловые величины
5.2. Бифуркации гомоклииических траекторий седла, происходящие на границе множества систем Морса - Смейла
5.3. Требования общности положения
5.4. Главные семейства в R3 и их свойства
5.5. Версальность главных семейств
5.6. Седло с комплексным ведущим направлением в R3
5.7. Добавление: бифуркации гомоклииических петель вне "границы множества систем Морса - Смейла
§ 6. Бифуркации, связанные с иетрансверсальными пересечениями
6.1. Векторные поля без контуров и гомоклииических траекторий
6.2. Теорема о недостижимости
6.3. Модули
6.4. Системы с контурами
6.5. Диффеоморфизмы с нетривиальными базисными множествами
6.6. Векторные поля в R3 с гомоклииической траекторией цикла
6.7. Символическая динамика
6.8. Бифуркации «подков Смейла»
6.9. Векторные поля на бифуркационной поверхности
6.10. Диффеоморфизмы с бесконечным множеством устойчивых периодических траекторий
§ 7. Бесконечные неблуждающие множества
7.1. Векторные поля на двумерном торе
7.2. Бифуркации систем с двумя гомоклииическими кривыми седла
7.3. Системы с аттракторами Фейгенбаума
7.4. Рождение неблуждающих множеств
7.5. Сохранение и гладкость инвариантных многообразий (по Фе-ничелю)
7.6. Вырожденное семейство и его окрестность в функциональном пространстве
7.7. Рождение торов в трехмерном фазовом пространстве
§ 8. Аттракторы и их бифуркации
8.1. Вероятностно предельные множества (по Милнору)
8.2. Статистически предельные множества
8.3. Внутренние бифуркации и кризисы аттракторов
8.4. Внутренние бифуркации и кризисы положений равновесия и циклов
8.5. Бифуркации двумерного тора
Глава 4. Релаксационные колебания
§ 1. Основные понятия
1.1. Пример. Уравнение Ван дер Поля
1.2. Быстрые и медленные движения
1.3. Медленная поверхность и медленное уравнение
1.4. Медленное движение как аппроксимация возмущенного
1.5. Явление срыва
§ 2. Особенности быстрого и медленного движений
2.1. Особенности быстрого движения в точках срыва систем с одной быстрой переменной
2.2. Особенности проектирования медленной поверхности
2.3. Медленное движение систем с одной медленной переменной
2.4. Медленное движение систем с двумя медленными переменными
2.5. Нормальные формы фазовых кривых медленного движения
2.6. Связь с теорией уравнений, не разрешенных относительно производной
2.7. Вырождение контактной структуры
§ 3. Асимптотика релаксационных колебаний
3.1. Вырожденные системы
3.2. Системы первого приближения
3.3. Нормализация быстро-медленных уравнений с двумя медленными переменными при (?)>0
3.4. Вывод систем первого приближения
3.5. Исследование систем первого приближения
3.6. Воронки
3.7. Периодические релаксационные колебания на плоскости
§ 4. Затягивание потери устойчивости при переходе пары собственных значений через мнимую ось
4.1. Типичные системы
4.2. Затягивание потери устойчивости
4.3. Жесткость потери устойчивости в аналитических системах типа 2
4.4. Гистерезис
4.5. Механизм затягивания
4.6. Вычисление момента срыва в аналитических системах
4.7. Затягивание при потере устойчивости циклом
4.8. Затягивание потери устойчивости и «утки»
§ 5. Решения-утки
5.1. Пример: особая точка на складке медленной поверхности
5.2. Существование решений-уток
5.3. Эволюция простых вырожденных уток
5.4. Полулокальное явление: утки с релаксацией
5.5. Утки и (?) и (?)
Рекомендуемая литература
Литература

Катастрофой называется скачкообразное изменение, возникающее в виде внезапного ответа системы на плавное изменение внешних условий. Математическое описание явлений, связанных с резкими скачками и качественными изменениями картины процесса, дается теориями особенностей и бифуркаций; бифуркации (катастрофы) представляют собой разрывы в системах, описываемых гладкими (непрерывными) функциями. Теория катастроф французского математика Р. Тома (R.Thom) - топологическая формализация, математический язык которой сложен даже для математиков. Теории особенностей, бифуркаций и катастроф наилучшим образом изложены в доступной для понимания биолога и небольшой по числу страниц книге «Теория катастроф» нашего соотечественника В.И. Арнольда, одного из лучших математиков мира. Эти теории описывают возникновение дискретных структур из непрерывных, называемых математиками гладкими.

Итак, источники теории катастроф – теория бифуркаций динамических систем великих математиков А. Пуанкаре (H. Poincare) и А.А. Андронова и топологическая теория особенностей гладких отображений Х. Уитни (H. Whitney). Некоторое представление об топологических особенностях может дать изображение так называемой каустики (от греч. «жгущий»), возникающей при отражении от окружности пучка параллельных лучей (рис. 1) – к примеру, в чашке с жидкостью.

Рис. 1. Каустика при отражении от окружности пучка лучей (Брус, Джиблин, 1988)

Топологическая особенность, называемая сборкой, она же бифуркация, элементарная катастрофа, схематически показана на рис. 2.

Рис. 2. Топологическая особенность (сборка) и ее проекция на плоскость (Брус, Джиблин, 1988)

Термин «бифуркация» (раздвоение, образование вилки) употребляется, как и «катастрофа», для обозначения качественных перестроек различных систем

при изменении параметров. Обычный пример катастрофы, бифуркации представляет собой поведение какой-либо упругой конструкции, под воздействием увеличивающейся нагрузки внезапно, скачкообразно переходящей в другое положение (рис. 3), причем направление выгиба конструкции предсказать невозможно.

Рис. 3. Прогиб колонны при превышении критической нагрузки (Малинецкий, 1997)

Графически бифуркация изображена на рис. 4: система имеет одно решение, одно значение в каждой точке - до точки бифуркации, после чего появляется выбор между двумя возможными решениями.

Рис. 4. Графическое представление бифуркации (катастрофы)

В самых разнообразных системах при изменении значения «управляющей» переменной система уходит от равновесия, достигая порога устойчивости. Это критическое значение называется точкой бифуркации; в точке бифуркации у системы появляется «выбор», в котором неизбежно присутствует элемент случайности с невозможностью предсказать выбор траектории эволюции системы.. Последовательность бифуркаций во времени описывает морфологию поведения системы (рис. 5).

Рис. 5. Примеры последовательностей бифуркаций (Малинецкий, 1997)

Теория катастроф указывает некоторые общие черты явлений скачкообразного изменения режима разнообразных систем в ответ на плавное изменение внешних условий: сочетание случайности и необходимости, детерминизма и непредсказуемости, возможность выбора из нескольких решений вблизи точки бифуркации, неожиданно сильного отклика на слабое воздействие (и наоборот).

В 70-х годах теорию катастроф стали применять к широкому спектру явлений с дискретным, скачкообразным поведением, когда кажущаяся

Сложные динамические системы включают флуктуирующие, случайным образом изменяющиеся компоненты. Отдельные флуктуации или их сочетания в системе с обратной связью, усиливаясь, вызывают разрушение прежнего состояния системы. Случайные воздействия в момент перелома (в точке бифуркации) могут подтолкнуть систему на новый путь развития; после же выбора одного из возможных путей, траектории развития, действует однозначный детерминизм - развитие системы предсказуемо до следующей точки бифуркации. Так случайность и необходимость дополняют друг друга.

В неравновесных условиях вблизи точки бифуркации система очень чувствительна к внешним воздействиям, и малое по силе внешнее воздействие, слабый сигнал может вызвать значительный отклик, неожиданный эффект. Внешние физические поля могут восприниматься системой, влияя на ее морфогенез. Так, при образовании ячеек Бенара (см. ниже) существенную роль начинает играть гравитация. Есть и биологические аналогии: роль гравитации в становлении дорсо-вентральной полярности при оплодотворении яйцеклетки амфибий, поляризация зиготы фукоидных водорослей под воздействием градиента освещенности.

Итак, в далеком от равновесия состоянии системы на первый план выступают нелинейные соотношения, слабое внешнее воздействие может порождать неожиданное, непредсказуемое поведение системы в целом. Иногда в состояниях, далеких от равновесия, очень слабые флуктуации или внешние возмущения могут усиливаться до огромных, скачкообразным образом разрушающих всю прежнюю структуру системы и переводящих ее в иное состояние.

К теории катастроф по сути близка идея самоорганизованной критичности (П. Бак и К. Чен, 1991), согласно которой системы с большим числом

взаимодействующих элементов спонтанно эволюционируют к критическому состоянию, когда малое воздействие может привести к катастрофе. Сложные системы могут разрушиться не только от мощного удара, но и от малого события, запускающего цепную реакцию, каскад бифуркаций, разрушительный турбулентный режим. К сложным системам относятся многие природные (земная кора, экосистемы) и социальные системы; примеры природных катастроф – землетрясения, лавины, социальных – крушение империй, обвал рынков. Экспериментальная модель Бака и Чена (Bak, Chen) – конические кучи сухого песка. Падение единственной песчинки на песчаный конус, находящийся в критическом состоянии, может вызвать обвал, катастрофу. В критическом состоянии падение отдельных скатывающихся песчинок, фиксируемое в эксперименте как «шум мерцания», оказывается предвестником катастрофы; можно выявить подобные предвестники природных и социальных катастроф. Кучи песка, по словам авторов, это не просто экспериментальная модель, это новый взгляд на мир, метафора кооперативного поведения многих частиц, неустойчивого равновесия, непредсказуемости. Это холистическая концепция: глобальные характеристики и эволюцию системы нельзя понять, анализируя составляющие ее части.

Вхождение системы в непредсказуемый режим, переход к хаосу, описывается каскадом бифуркаций, следующих одна за другой (рис. 6). Каскад бифуркаций ведет последовательно к появлению выбора между двумя решениями, затем четырьмя и т.д.; система начинает колебаться в хаотическом, турбулентном режиме последовательного удвоения возможных значений.

Теория бифуркаций и катастроф неразрывно связана с современными представлениями о динамическом, или детерминированном, хаосе.

Рис. 6. Сценарий удвоения периода; на вставке показана выделенная часть (Пайтген, Рихтер, 1993)