Наследственное заболевание обмена пуринов. Нарушение пуринового обмена: причины, симптомы и лечение Связь нарушения обмена пуринов и анемии

Условия подготовки к анализам:

Строго натощак

Диагностика нарушения обмена пуринов и пиримидинов в крови

Пурины и пиримидины являются абсолютно незаменимыми компонентами клеток: они необходимы для синтеза ДНК и РНК, запасания и транспорта энергии, формирования коэнзимов и метаболитов синтеза фосфолипидов и углеводов, а также передачи сигнала в клетку и его преобразования. Учитывая такие разнообразные функции пуринов и пиримидинов, становится ясным, почему нарушения их обмена приводят к одновременному поражению сразу нескольких систем органов. Чаще эти нарушения обусловлены недостаточностью ферментов, необходимых для нормального метаболизма пуринов и пиримидинов, носят врожденный характер и проявляются в младенческом или раннем детском возрасте, хотя некоторые из них манифестируют уже во взрослом возрасте. На сегодняшний день известно около 30 таких нарушений, 17 из которых приводят к заболеваниям.

Несмотря на то что существуют некоторые закономерности в клинической картине этих врожденных болезней (например, частое поражение нервной системы и задержка умственного развития при нарушении обмена пиримидинов), клиническая картина многих из этих нарушений не имеет каких-либо специфических признаков. Все эти болезни могут быть очень похожи друг на друга. В связи с этим диагностировать эти заболевания, а тем более различить их между собой на основании только лишь симптомов невозможно. С другой стороны, своевременная диагностика этих заболеваний очень важна, так как она позволяет провести генетическое консультирование и в некоторых случаях начать терапию, которая может полностью избавить пациента от симптомов. Основным и единственным методом окончательной диагностики нарушений метаболизма пуринов и пиримидинов является лабораторный метод, в ходе которого одновременно исследуют пурины и пиримидины и все их метаболиты, известные на данный момент и значимые в клиническом плане.

В комплексное исследование входят следующие компоненты:

Метаболизм пиримидинов

1. Метаболит синтеза пиримидинов - оротовая кислота. Дефект: наследственная оротовая ацидурия.

2. Пиримидиновые азотистые основания: цитозин, урацил (и его производное гидроксиметилурацил) и тимин. Дефект: наследственная тиминурацилурия.

3. Пиримидиновые нуклеозиды: цитизин, уридин (и его производное дезоксиуридин) и тимидин.

4. Метаболиты распада пиримидинов: дигидроурацил, уреидопропионовая кислота и β-аланин. Дефект: наследственный дефицит β-уреидопропионазы.

Метаболизм пуринов

1. Пуриновые азотистые основания: гуанин и аденин.

2. Пуриновые нуклеозиды: гуанозин (и его производное дезоксигуанозин), аденозин (и его производное дезоксиаденозин) и инозин. Дефект: первичный иммунодефицит (недостаточность пуриннуклеозидфосфорилазы).

3. Метаболиты распада пуринов: ксантин и мочевая кислота. Дефект: синдром Леша - Нихана, тяжелый комбинированный иммунодефицит (недостаточность аденозиндезаминазы), ксантинурия.

В настоящий момент не существует более или менее четких указаний относительно того, в каких группах пациентов следует проводить исследование на пурины/пиримидины и их метаболиты. Учитывая разнообразную клиническую картину этих заболеваний, назначить этот анализ может практически любой специалист.

Ежегодно обнаруживают новые нарушения метаболизма пуринов и пиримидинов. В это комплексное исследование включены основные метаболиты, хотя все же не все. Поэтому нормальный результат этого исследования не может однозначно исключить наличие какого-либо заболевания из этой группы.

В некоторых случаях комплексный лабораторный анализ выявляет нарушения метаболизма пуринов и пиримидинов, которые, однако, никак не проявляются и клинического значения не имеют.

Следует отметить, что при обследовании пациента с подозрением на нарушение метаболизма пуринов и пиримидинов в большинстве случаев требуются дополнительные лабораторные тесты, с помощью которых удается оценить степень тяжести повреждения органов и тканей.

Болезни нарушения обмена соединительной ткани: синдром Марфана («паучьи пальцы», арахнодактилия) - поражение соединительной ткани вследствие мутации в гене, ответственном за синтез фибриллина; мукополисахаридозы - группа заболеваний соединительной ткани, связанных с нарушеним обмена кислых гликозаминогликанов. Фибродисплазия - заболевание соединительной ткани,связанное с ее прогрессирующим окостенением в результате мутации в гене ACVR1.

Наследственные нарушения циркулирующих белков: гемоглобинопатии - наследственные нарушения синтеза гемоглобина. Выделяют количественные (структурные) и качественные их формы. Первые характеризуются изменением первичной структуры белков гемоглобина, что может приводить к нарушению его стабильности и функции (серповидноклеточная анемия). При качественных формах структура гемоглобина остается нормальной, снижена лишь скорость синтеза глобиновых цепей (талассемия).

Наследственные болезни обмена металлов: болезнь Коновалова-Вильсона и др.

Синдромы нарушения всасывания в пищеварительном тракте: муковисцидоз; непереносимость лактозы и др.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные болезни возникают в результате мутаций в половых клетках одного из родителей. Из поколения в поколение передаются не более 3-5 % из них. Хромосомными нарушениями обусловлены примерно 50 % спонтанных абортов и 7 % всех мёртворождений.

Все хромосомные болезни принято делить на две группы: аномалии числа хромосом и нарушения структуры хромосом.

Аномалии числа хромосом: Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом: синдром Дауна - трисомия по 21 хромосоме, к признакам относятся: слабоумие, задержка роста, характерная внешность, изменения дерматоглифики; синдром Патау - трисомия по 13 хромосоме, характеризуется множественными пороками развития, идиотией, часто - полидактилия, нарушения строения половых органов, глухота; практически все больные не доживают до одного года; синдром Эдвардса - трисомия по 18 хромосоме, нижняя челюсть и ротовое отверстие маленькие, глазные щели узкие и короткие, ушные раковины деформированы; 60% детей умирают в возрасте до 3-х месяцев, до года доживают лишь 10%, основной причиной служит остановка дыхания и нарушение работы сердца.

Болезни, связанные с нарушением числа половых хромосом: Синдром Шерешевского - Тёрнера - отсутствие одной Х-хромосомы у женщин (45 ХО) вследствие нарушения расхождения половых хромосом; к признакам относится низкорослость, половой инфантилизм и бесплодие, различные соматические нарушения (микрогнатия, короткая шея и др.); полисомия по Х-хромосоме - включает трисомию (кариотии 47, XXX), тетрасомию (48, ХХХХ), пентасомию (49, ХХХХХ), отмечается незначительное снижение интеллекта, повышенная вероятность развития психозов и шизофрении с неблагоприятным типом течения; полисомия по Y-хромосоме - как и полисомия по X-хромосоме, включает трисомию (кариотии 47, XYY), тетрасомию (48, ХYYY), пентасомию (49, ХYYYY), клинические проявления также схожи с полисомией X-хромосомы;

Синдром Клайнфельтера - полисомия по X- и Y-хромосомам у мальчиков (47, XXY; 48, XXYY и др.), признаки: евнухоидный тип сложения, гинекомастия, слабый рост волос на лице, в подмышечных впадинах и на лобке, половой инфантилизм, бесплодие; умственное развитие отстает, однако иногда интеллект нормальный.

Болезни, причиной которых является полиплоидия: триплоидии, тетраплоидии и т. д.; причина - нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного (23) диплоидный (46) набор хромосом, то есть 69 хромосом (у мужчин кариотип 69, XYY, у женщин - 69, XXX); почти всегда летальны до рождения.

Хромосомные перестройки: Транслокации - обменные перестройки между негомологичными хромосомами. Делеции - потери участка хромосомы. Признаком его служит необычный плач детей, напоминающий мяуканье или крик кошки. Это связано с патологией гортани или голосовых связок. Наиболее типичным, помимо «кошачьего крика», является умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова). Инверсии - повороты участка хромосомы на 180 градусов. Дупликации - удвоения участка хромосомы. Изохромосомия - хромосомы с повторяющимся генетическим материалом в обоих плечах. Возникновение кольцевых хромосом - соединение двух концевых делеций в обоих плечах хромосомы.

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25 % приходится на аутосомные трисомии, 46 % - на патологию половых хромосом. Структурные перестройки составляют 10,4 %. Среди хромосомных перестроек наиболее часто встречаются транслокации и делеции.


Половое размножение у животных. Образование половых клеток (овогенез и сперматогенез). Осеменение и оплодотворение.

Переход к половому размножению связан с появлением специализированных половых клеток - мужских и женских гамет, в результате слияния которых (оплодотворения) образуется зигота - клетка, из которой развивается новый организм, обладающий новой комбинацией исходных генетических признаков. Половое размножение впервые появилось у простейших, но переход к нему не был связан с немедленной утратой способности к репродукции бесполым путем: ряд животных сохранили ее, обычно чередуя бесполое размножение с половым. Такое чередование поколений наблюдается у некоторых простейших, кишечнополостных и оболочников.

Сперматогене́з - развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза. Сперматозоиды развиваются из клеток-предшественников, которые проходят редукционные деления (деления мейоза) и формируют специализированные структуры (акросома, жгутик и пр.). У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки - гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созревания сперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип - сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.

Овогене́з - развитие женской половой клетки - яйцеклетки (яйца).Во время эмбрионального развития организма гоноциты вселяются в зачаток женской половой гонады (яичника), и всё дальнейшее развитие женских половых клеток происходит в ней.

Оогенез совершается в три этапа, называемых периодами. Период размножения:Попав в яичник, гоноциты становятся оогониями. Оогонии осуществляют период размножения. В этот период оогонии делятся митотическим путем. У позвоночных животных (в том числе у человека) этот процесс происходит только в период эмбрионального развития самки. Период роста: Половые клетки в этом периоде называются ооцитами первого порядка. Они теряют способность к митотическому делению и вступают в профазу I мейоза. В этот период осуществляется рост половых клеток. Период созревания: Созревание ооцита - это процесс последовательного прохождения двух делений мейоза (делений созревания). Как уже говорилось выше, при подготовке к первому делению созревания ооцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост. Из двух делений созревания первое у большинства видов является редукционным, так как именно в ходе этого деления гомологичные хромосомы расходятся по разным клеткам. Таким образом, каждая из разделившихся клеток приобретает половинный (гаплоидный) набор хромосом.

Осеменение и оплодотворение. Процесс осеменения предшествует оплодотворению - слиянию гамет. Различают два способа осеменения (и соответственно оплодотворения): наружное и внутреннее. При наружном осеменении яйца и сперматозоиды выделяются в воду, где сперматозоиды, активно плавая, могут соединиться с яйцом и произвести оплодотворение. Этот способ может быть свойствен только водным (или, как земноводные, сохранившим связь с водной средой) животным. Большую независимость от внешних факторов (в частности, от водной среды) и более экономную продукцию гамет обеспечивает другой способ осеменения - внутреннее, при котором сперматозоиды вводятся непосредственно в женские половые пути. Известен также вариант внутреннего осеменения с помощью сперматофоров - капсул, наполненных сперматозоидами. Такое осеменение называют иногда наружно-внутренним. У саламандры самка захватывает выделенный самцом сперматофор своей клоакой, куда открываются половые протоки; самцы многих паукообразных с помощью своих клешневидных хелицер переносят сперматофор прямо в половое отверстие самки; самец головоногих моллюсков захватывает сперматофор особым видоизмененным щупальцем и переносит его в мантийную полость самки. Но в любом случае оплодотворение происходит внутри тела самки, обычно в яйцеводах. Внутреннее осеменение свойственно ряду водных животных и всем наземным. Оно появилось у плоских червей.

Главный клинический синдром, вызванный расстройством пуринового обмена – это подагра. Под подагрой понимают гетерогенную группу нарушений пуринового обмена, проявляющихся выраженной гиперуринемией, приступами артрита, отложением кристаллов моногидрата мочекислого натрия в тканях, уратурической нефропатией и мочекаменной болезнью.

Подагра – полигенное заболевание с пороговым эффектом, определяемым факторами, влияющими на суточный кругооборот пуринов – диетой, приемом алкоголя, физической активностью, локальными геохимическими особенностями. 95% больных подагрой – мужчины. Эстрогены оказывают антиуринемическое действие. Возраст больных обычно старше 50 лет (исключение – при моногенных дефектах пуринового обмена).

Регионы с молибденовыми аномалиями имеют более высокую частоту заболеваний (активация молибденозависимого фермента фосфорибозилпирофосфатсинтетазы).

Подагра и геперуринемия чаще встречаются у лиц с высоким социальным и образовательным статусом («недуг аристократов»). Дело не только в различиях диеты. Большое значение имеет влияние мочевой кислоты на уровень умственной активности и интеллектуальную работоспособность. Так как мочевая кислота (тригидроксиксантин) и кофеин (триметилксантин) являются близкими структурными аналогами, то гиперуринемия оказывает определенный допинг – эффект на умственную деятельность.

Отечественный генетик В.П. Эфроимсон обнаружил среди лиц, которых энциклопедии относят к гениям (архивы), около 40% носителей признаков гиперуринемии.

В 80% случаев подагра развивается как первичное заболевание, в остальных – вторичная.

Наиболее четко прослеживается связь подагры с сахарным диабетом, гипертензией, атеросклерозом, ожирением, стеатозом печени, что некоторые авторы считают это проявлением единого конституционально обусловленного синдрома – метаболический Х – синдром или системный дефект натрий – водородных трансмембранных противопереносчиков.

Этиология подагры.

I. Повышенное образование мочевой кислоты.

1.Диетическая перегрузка экзогенными пуринами.

Богаты пуринами: икра, молоки, печень, почки, анчоусы, мясо, темные сорта пива, красное вино, кофе, какао, шоколад, чай.

Бедны пуринами: молоко, сыры, фрукты, овощи, водка.

2. Дефицит гипоксантингуанинфосфорибозилтрансферазы.

3. Повышенная активность ФРПФ – синтетазы. Данный фермент также кодируется в Х-хромосоме. Этот фермент в норме не дает гипоксантину и гуанину стать мочевой кислотой. В данном случае развивается моногенная наследственная форма подагры(синдром Леша – Нихена и Келли – Зигмиллера).

4. Высокий уровень распада пуриновых нуклеотидов (апоптоз и некробиоз, лечение цитостатиками, псориаз, гемолитические анемии и т.д.).

5.Ускоренный распад АТФ (гипоксия, судороги, физическая нагрузка, гипертиреоз).

II. Нарушение выведения мочевой кислоты.

    Снижение фильтрации мочевой кислоты (почечная недостаточность, уремия, поликистоз почек, нефропатия беременных).

    Снижение секреции мочевой кислоты (все виды ацидоза, так как мочевая кислота конкурирует с Н за почечные переносчики).

    Повышенная дистальная реабсорбция (гиперпаратиреоз, сархаидоз, эндогенный гипервитаминоз D).

    Отравление свинцом, бериллием, циклоспоринами.

    Болезнь Дауна (причины нарушения выведения неясны).

Синдром Леша-Нихана встречается редко (1: 800000 новорожденных), наследование идет по сцепленному с полом рецессивному типу.

Болезнь начинает развиваться в грудном возрасте, проявляясь мышечным гипертонусом, повышенной рефлекторной возбудимостью, олигофренией, склонностью ребенка к самоповреждениям. Высокое содержание мочевой кислоты и ее солей (диагностический признак), несмотря на усиленное выделение их с мочой, приводит к формированию камней в мочевыводящих путях, отложению солей мочевой кислоты в суставах.

Нарушение метаболизма металлов

Примером нарушения минерального обмена может служить расстройство обмена меди.

Болезнь Вильсона-Коновалова . Тип наследования - аутосомно-рецессивный. Популяционная частота не установлена.

Соединения меди играют большую роль в обменных процессах. Ионы меди входят в состав многих ферментов митохондрий, участвующих в реакциях окисления. Заболевание чаще проявляется в школьном возрасте. Первыми симптомами могут быть увеличение печени и селезенки, нарушение функции печени, ЦНС, иногда почек, снижение количества эритроцитов, тромбоцитов и лейкоцитов в крови. Поражение печени сопровождается желтухой, рвотой, постепенно развивается цирроз. Поражения ЦНС сопровождаются снижением интеллекта, изменением поведения, дрожанием рук, нарушением глотания, повышением тонуса мышц.

Наследственные заболевания, вызванные нарушением развития органов и тканей.

Муковисцидоз . Тип наследования - аутосомно-рецессивный. Популяционная частота заболевания 1:2500 новорожденных. Это одно из самых распространенных наследственных за­болеваний. Муковисцидоз представляет собой множествен­ные поражения желез внешней секреции, проявляющиеся выделением секретов повышенной вязкости, что ведет к застою слизи в органах (легких, поджелудочной железе и кишечни­ке) и развитию воспалительных процессов.

Ахондроплазия . Тип наследования аутосомно-доминантный. Популяционная частота 1:100000. Ахондроплазия-одна из наследственных болезней костной системы. Она обусловлена аномальным ростом и развитием хрящевой ткани чаще всего в эпифизах трубчатых костей и основании черепа, результатом чего является резкое недоразвитие костей в длину. Характерными признаками заболевания являются низкий рост (120-130 см у взрослых) при сохранении нормальной длины туловища, большой череп с выступающим затылком, за­павшая переносица.

Миодистрофия Дюшенна (МД) - тяжелое наслед­ственное заболевание с повышенной активностью в плазме крови ряда мышечных ферментов. Встречается с частотой 1:3500 новорожденных мальчиков. Наследование сцепленное с полом, рецессивное.

Заболевание начинается в возрасте 3-5 лет, нача­ло заболевания: нарастающая слабость в мышцах бедер и таза с постепенным переходом процесса в икроножные мышцы, мышцы верхнего плечевого пояса, спины, живота и др. Появляется утиная походка. Заболевание неуклонно прогрессирует, дети оказываются прикованными к постели с 10-11-летнего возраста. Имеется тенденция к некоторому снижению умственных способностей. Продол­жительность жизни больных 20-35 лет. Смерть обычно наступает от легочной инфекции или сердечной недоста­точности из-за миокардиодистрофии.

Клиническая генетика. Е.Ф. Давыденкова, И.С. Либерман. Ленинград. «Медицина». 1976 год.

ВЕДУЩИЕ СПЕЦИАЛИСТЫ В ОБЛАСТИ ГЕНЕТИКИ

Амелина Светлана Сергеевна - профессор кафедры по курсу генетики и лабораторной генетики, доктор медицинских наук. Врач генетик высшей квалификационной категории

Дегтерева Елена Валентиновна - ассистент кафедры по курсу генетики и лабораторной генетики, врач-генетик первой категории

Редактор страницы: Крючкова Оксана Александровна

Большой интерес представляет исследование генетических основ широко распространенного обменного заболевания, воз­никающего в результате нарушения метаболизма уратов, - по­дагры. Известно, что подагра часто сочетается с эссенциальной гипертонией, сахарным диабетом, гиперхолестеринемией и ате­росклерозом. Это дает основания для споров между сторонниками полигенного и мономерного наследования этой патологии.

Предполагаются 4 возможных механизма возникновения по­дагры: 1) повышенное поступление пуринов с пищей; 2) повышение их эндогенного образования; 3) дефект выделения с мочой; 4) де­фект экстраренального (через кожу, кишечник) выделения пуринов. McKusick (1968) считает, что, хотя на возникновение подагры влия­ют многие генетические и средовые факторы и хотя уровень моче­вой кислоты сыворотки крови определяется как генетическими, так и негенетическими влияниями, классическая семейная подагра является мономерно наследуемым доминантным заболеванием. Оче­видно, в повышении уровня мочевой кислоты имеет значение как повышенная скорость ее синтеза, так и сниженная скорость выве­дения ее почками. В некоторых семьях с обоими больными роди­телями дети заболевают необычно рано и тяжело, что, вероятно, обусловлено их гомозиготностыо по мутантному гену. В то же время ряд авторов разделяют точку зрения о полигеином наследовании подагры.

Существует также представление, что подагра является высокогетерогенной категорией заболеваний, представляющих со­бой большой биохимический интерес.

Kelley с сотр. (1971), а также ряд других исследователей, нашли, что у некоторых больных подагры имеет место частичная недоста­точность фермента пуринового обмена, необходимого для превра­щения гипоксантина и гуанина в нуклеотиды, гипоксантин-гуанил-фосфорибозил-трансферазы. Этот фермент отличается у боль­ных и гетерозиготных носителей мутантного гена повышенной степенью устойчивости к нагреванию. Это свидетельствует об изменении физических свойств фермента и, следовательно, о структурных изменениях, снижающих энзиматическую актив­ность. Интересно, что недостаточность этого же фермента выявляет­ся при синдроме Lesch - Nyhan, наследуемом рецессивно, сцеплению с Х-хромосомой. У детей с этой патологией наблюдается умственное недоразвитие, спазмирование мышц, насильственное самоповреждение, повышение содержания мочевой кислоты в крови и моче. Последнее обстоятельство является причиной об­разования мочекислых камней с последующим развитием почеч­ной недостаточности.

Нередко у больных развиваются симптомы подагры. Отсюда второе название заболевания; первичная подагра. В эритроцитах и фибробластах больных выявляется резкая недостаточность гипоксантин-фосфорибозил-трансферазы.

Описана повышенная концентрация оксипуринов (гипоксан­тин и ксантин) в цереброспинальной жидкости больных, что поз­воляет предполагать повышенный синтез пуринов в мозгу. В связи с этим допускают возможную роль высокой концентрации окси­пуринов в цереброспинальной жидкости в развитии неврологичес­кого синдрома.

Кроме подагры, к числу наследственных нарушений обмена пуринов и пиримидинов относятся ксантинурия, оротовая аци­дурия и Р-аминоизомасляная ацидурия.

Ксантинурия

Первичным биохимическим дефектом является недостаточ­ность ксантиноксидазы.

Патогенез заболевания связан с блокадой окисления ксантина в мочевую кислоту. Поэтому у больных ксантин, а не мочевая кис­лота является конечным продуктом пуринового обмена. В случаях ксантинурии с повышенным выделением мочевой кислоты, по- видимому, имеет место другой метаболический дефект.

Заболевание наследуется аутосомно-доминантным путем.

Имеющийся метаболический дефект приводит к образованию ксантиновых мочевых камней и обусловливает типичную клини­ческую картину почечнокаменной болезни. В моче больных содер­жится большое количество ксантина при одновременно резком снижении содержания мочевой кислоты в сыворотке крови и в моче. Однако в некоторых случаях ксантинурии у больных выделяет­ся одновременно большое количество мочевой кислоты. Ксантиновые камни редко выявляются рентгенологически. Поэтому диаг­ноз ксантинурии ставится на основании симптомов почечнокамен­ной болезни в сочетании с повышенным содержанием ксантина в моче.

Для лечения применяется диета с ограниченным содержанием пуринов (ограничение мясных продуктов), прием больших коли­честв жидкости и веществ, ощелачивающих мочу.

Оротовая ацидурия

В основе заболевания лежит недостаточность пирофосфорилазы и декарбоксилазы оротидиловой кислоты (соответственно 1,5 и 22% от нормы).

Недостаточность указанных ферментов блокирует превраще­ние оротовой кислоты в уридиловую и цитидиловую кислоты, представляющие собой этапы синтеза пиримидинового кольца. Отсутствие в организме указанных кислот, тормозящих по типу обратной связи синтез оротовой кислоты, обусловливает ее из­быточный синтез.

Описан случай заболевания у пятимесячного мальчика, роди­тели которого состояли в кровном родстве. Заболевание про­явилось клинической картиной тяжелой мегалобластической анемии, сопровождавшейся выделением с мочой большого коли­чества кристаллов оротовой кислоты. У родителей, брата и сестры больного было обнаружено снижение активности пирофосфорилазы и декарбоксилазы оротидиловой кислоты.

У описанного больного диагноз был поставлен на основании обнаружения кристаллов оротовой кислоты в моче.

Улучшения состояния больного удалось добиться с помощью применения гормонов коры надпочечников. Полное излечение на­ступило в результате приема уридиловой и цитидиловой кислот, которые, видимо, по типу отрицательной обратной связи затор­мозили избыточный синтез оротовой кислоты (А. Хорст, 1967).

Отмечается высокая частота гетерозиготности по оротовой ацидурии в населении.

1-аминоизомасляная ацидурия

Первичный биохимический дефект, обусловливающий разви­тие этого заболевания, неизвестен.

В отношении патогенеза (1-аминоизомасляной ацидурии пред­полагают, что повышенное ее выделение может быть обусловлено усиленным распадом ДНК, так как предшественниками 3-аминоизомасляной кислоты являются тимин и валин.

Заболевание наследуется аутосомно-рецессивным путем.

Какая-либо явная клиническая патология при этом метабо­лическом дефекте отсутствует. Некоторые лица ежедневно выде­ляют с мочой 200-300 мг аминоизомасляной кислоты. Процент лиц-выделителей р-аминбизомасляной кислоты довольно высок (10% белого населения США, 30% негров, 40% китайцев и япон­цев).