Инфекционный лимфангит лошадей. Эпизоотология

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Рентгенодиагностические аппараты принято делить на универсальные, позволяющие производить рентгеновское просвечивание и рентгеновские снимки всех частей тела, и аппараты специального назначения. Последние предназначены для выполнения рентгенологических исследований в неврологии, челюстно-лицевой хирургии и стоматологии, маммологии, урологии, ангиологии. Созданы также специальные аппараты для исследования детей, для массовых проверочных исследований (флюорографы), для исследований в операционных. Для рентгеноскопии и рентгенографии больных в палатах и реанимационном отделении применяют передвижные рентгеновские установки.

В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения. Чем сильнее поглощает исследуемый орган излучение, тем интенсивнее тень, которую он отбрасывает на рентгеновский флюоресцентный экран. И, наоборот, чем больше лучей пройдет через орган, тем слабее его тень на экране.

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. Вещества, задерживающие излучение сильнее, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов - бария или йода. В качестве же рентгенонегативных веществ используют газы: закись азота, углекислый газ, кислород, воздух. Основные требования к рентгеноконтрастным веществам очевидны: их максимальная безвредность (низкая токсичность), быстрое выведение из организма.

Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды. В других случаях контрастное вещество вводят в полость или клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

В некоторых случаях рентгенологическое исследование проводят одновременно с двумя рентгеноконтрастными средствами. Наиболее часто таким приемом пользуются в гастроэнтерологии, производя так называемое двойное контрастирование желудка или кишки: в исследуемую часть пищеварительного канала вводят водную взвесь сульфата бария и воздух.

Можно выделить 5 типов приемников рентгеновского излучения: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (в том числе компьютерная томография).

2. Рентгенография (рентгеновская съемка)

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм 2 . Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

3. Электрорентгенография

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

4. Рентгенотелевизионное просвечивание

Рентгенотелевизионное просвечивание - современный вид рентгеноскопии. Оно выполняется с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

Таким образом, в УРИ осуществляется такая цепочка преобразования образа исследуемого объекта: рентгеновский - световой - электронный (на этом этапе происходит усиление сигнала) - вновь световой - электронный (здесь возможно исправление некоторых характеристик образа) - вновь световой.

Рентгеновское изображение на телевизионном экране, как и обычное телевизионное изображение, можно рассматривать при видимом свете. Благодаря УРИ рентгенологи совершили скачок из царства темноты в царство света. Как остроумно заметил один ученый, «темное прошлое рентгенологии позади». А ведь в течение многих десятилетий рентгенологи могли считать своим лозунгом слова, начертанные на гербе Дон-Кихота: «Posttenebrassperolucem» («После тьмы надеюсь на свет»).

Рентгенотелевизионное просвечивание не требует темновой адаптации врача. Лучевая нагрузка на персонал и пациента при нем значительно меньше, чем при обычной рентгеноскопии. На экране телевизора заметны детали, которые при рентгеноскопии не улавливаются. По телевизионному тракту рентгеновское изображение может быть передано на другие мониторы (в комнату управления, в учебную аудиторию, в кабинет консультанта и т. д.). Телевизионная техника обеспечивает возможность видеозаписи всех этапов исследования.

С помощью зеркал и линз рентгеновское изображение из рентгеновского электронно-оптического преобразователя может быть введено в кинокамеру. Такое рентгенологическое исследование носит название рентгенокинематографии. Это изображение может быть направлено также в фотокамеру. Получающиеся при этом снимки, имеющие небольшие - 70X70 или 100Х 100 мм - размеры и выполненные на рентгеновской пленке, носят название фоторентгенограмм (УРИ-флюорограмм). Они более экономичны, чем обычные рентгенограммы. Кроме того, при их выполнении меньше лучевая нагрузка на больного. Еще одно преимущество состоит в возможности скоростной съемки - до 6 кадров в секунду.

5. Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

При другом способе флюорографии, уже упомянутом в предыдущем параграфе, фотосъемку производят на пленки того же формата прямо с экрана электронно-оптического преобразователя. Этот способ исследования называют УРИ-флюорографией. Методика особенно выгодна при исследовании пищевода, желудка и кишечника, так как обеспечивает быстрый переход от просвечивания к съемке.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами. В поликлиниках и стационарах более дорогую рентгенографию, особенно при повторных контрольных исследованиях. Такое рентгенологическое исследование называют диагностической флюорографией. Основным назначением флюорографии в нашей стране является проведение массовых проверочных рентгенологических исследований, главным образом для выявления скрыто протекающих поражений легких. Такую флюорографию называют проверочной или профилактической. Она является способом отбора из популяции лиц с подозрением на заболевание, а также способом диспансерного наблюдения за людьми с неактивными и остаточными туберкулезными изменениями в легких, пневмосклерозами и т. д.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Ввиду малого формата кадра флюорография значительно дешевле рентгенографии. Ее повсеместное использование означает существенную экономию средств медицинской службы. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм. Сопоставление флюорограмм, произведенных при очередном проверочном обследовании, с флюорограммами предыдущих лет позволяет рано выявлять минимальные патологические изменения в органах. Этот прием получил название ретроспективного анализа флюорограмм.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий.

6. Дигитальная (цифровая) рентгенография

Описанные выше системы получения рентгеновского изображения относятся к так называемой обычной, или конвенциональной, рентгенологии. Но в семействе этих систем быстро растет и развивается новый ребенок. Это - дигитальные (цифровые) способы получения изображений (от англ. digit - цифра). Во всех дигитальных устройствах изображение строится в принципе одинаково. Каждая «дигитальная» картинка состоит из множества отдельных точек. Каждой точке изображения приписывается число, которое соответствует интенсивности ее свечения (ее «серости»). Степень яркости точки определяют в специальном приборе - аналого-цифровом преобразователе (АЦП). Как правило, число пикселей в одном ряду равно 32, 64, 128, 256, 512 или 1024, причем по ширине и высоте матрицы количество их равно. При величине матрицы 512 X 512 дигитальная картинка состоит из 262 144 отдельных точек.

Рентгеновское изображение, полученное в телевизионной камере, поступает после преобразования в усилителе на АЦП. В нем электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр. Таким образом, создается цифровой образ - цифровое кодирование сигналов. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. При переводе аналогового изображения в цифровое происходит, конечно, некоторая потеря информации. Но она компенсируется возможностями компьютерной обработки. С помощью компьютера можно улучшить качество изображения: повысить его контрастность, очистить его от помех, выделить в нем интересующие врача детали или контуры. Например, созданное фирмой Сименс устройство «Политрон» с матрицей 1024 X 1024 позволяет добиться отношения «сигнал - шум», равного 6000:1. Это обеспечивает выполнение не только рентгенографии, но и рентгеноскопии с высоким качеством изображения. В компьютере можно сложить изображения или вычесть одно из другого.

Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходим цифро-аналоговый преобразователь (ЦАП). Его функция противоположна АЦП. Цифровой образ, «упрятанный» в компьютере, он трансформирует в аналоговое, видимое (осуществляет декодирование).

У дигитальной рентгенографии большое будущее. Есть основания полагать, что она постепенно будет вытеснять обычную рентгенографию. Она не требует дорогостоящей рентгеновской пленки и фотопроцесса, отличается быстродействием. Она позволяет после окончания исследования производить дальнейшую (апостериорную) обработку изображения и передачу его на расстояние. Весьма удобно хранение информации на магнитных носителях (диски, ленты).

Большой интерес вызывает люминесцентная дигитальная рентгенография, основанная на использовании запоминающего изображения люминесцентного экрана. Во время рентгеновской экспозиции изображение записывается на такой пластине, а затем считывается с нее с помощью гелий-неонового лазера и записывается в цифровой форме. Лучевая нагрузка по сравнению с обычной рентгенографией уменьшается в 10 и более раз. Разрабатываются и другие способы дигитальной рентгенографии (например, снятие электрических сигналов с экспонированной селеновой пластины без обработки ее в электрорентгенографе).

Основные методы рентгенологического исследования

Классификация методов рентгенологического исследования

Рентгенологические методики

Основные методы Дополнительные методы Специальные методы – необходимо дополнительное контрастирование
Рентгенография Линейная томография Рентгеннегативными веществами (газы)
Рентгеноскопия Зонография Рентген-позитивные вещества Соли тяжелых металлов (сульфак окиси бария)
Флюорография Кимография Йодосодержащие водорастворимые вещества
Электро-рентгенография Электрокимография · ионные
Стереогрентгено-графия · неионные
Рентгенокинемато-графия Йодосодержащие жирорастворимые вещества
Компьютерная томография Тропного действия вещества.
МРТ

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм2. Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Преимущества рентгенографии

1. Широкая доступность метода и лёгкость в проведении исследований.

2. Для большинства исследований не требуется специальной подготовки пациента.

3. Относительно низкая стоимость исследования.

4. Снимки могут быть использованы для консультации у другого специалиста или в другом учреждении (в отличие от УЗИ-снимков, где необходимо проведение повторного исследования, так как полученные изображения являются оператор-зависимыми).

Недостатки рентгенографии

1. «Замороженность» изображения - сложность оценки функции органа.

2. Наличие ионизирующего излучения, способного оказать вредное воздействие на исследуемый организм.

3. Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

4. Без применения контрастирующих веществ рентгенография практически неинформативна для анализа изменений в мягких тканях.

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Преимущества рентгеноскопии Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость. Метод также позволяет достаточно быстро оценить локализацию некоторых изменений, за счет вращения объекта исследования во время просвечивания (многопроекционное исследование). При рентгенографии для этого требуется проведение нескольких снимков, что не всегда возможно (пациент ушел после первого снимка не дождавшись результатов; большой поток пациентов, при котором делаются снимки только в одной проекции). Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

Важной составной частью функционального анализа зубов, челюстей и ВНЧС является рентгенография. К рентгенологическим методам исследования относятся внутриротовая дентальная рентгенография, а также ряд методов внеротовой рентгенографии: панорамная рентгенография, ортопантомография, томография ВНЧС и телерентгенография.

На панорамной рентгенограмме видно изображение одной челюсти, на ортопантомограмме — обеих челюстей.

Телерентгенографию (рентгенография на расстоянии) применяют для изучения строения лицевого скелета. При рентгенографии ВНЧС используют методы Парма, Шюллера, а также томографию. Обзорные рентгенограммы малопригодны для функционального анализа: на них не видна суставная щель на всем протяжении, имеются проекционные искажения, наложения окружающих костных тканей.

Томография височно-нижнечелюстного сустава

Несомненные преимущества перед вышеназванными методами имеет томография (сагиттальная, фронтальная и аксиальная проекции), позволяющая видеть суставную щель, форму суставных поверхностей. Однако томография является срезом в одной плоскости и при этом исследовании невозможно оценить в целом положение и форму наружного и внутреннего полюсов головок ВНЧС.

Нечеткость суставных поверхностей на томограммах обусловлена наличием тени смазанных слоев. В области латерального полюса - это массив скуловой дуги, в области медиального полюса - каменистая часть височной кости. Томограмма бывает более четкой, если имеется срез в середине головки, а наибольшие изменения при патологии наблюдаются у полюсов головок.
На томограммах в сагиттальной проекции мы видим комбинацию смещения головок в вертикальной, горизонтальной и сагиттальной плоскостях. Например сужение суставной щели, обнаруживаемое на сагиттальной томограмме, может быть в результате смещения головки наружу, а не вверх, как принято считать; расширение суставной щели - смещение головки внутрь (медиально), а не только вниз (рис. 3.29, а).

Рис. 3.29. Сагиттальные томограммы ВНЧС и схема для их оценки. А - топография элементов ВНЧС справа (а) и слева (б) при смыкании челюстей в положении центральной (1), правой боковой (2) окклюзии и при открытом рте (3) в норме. Видна щель между костными элементами сустава - место для суставного диска; Б - схема для анализа сагиттальных томограмм: а - угол наклона заднего ската суставного бугорка к основной линии; 1 - переднесуставная щель; 2 - верхнесуставная щель; 3 - заднесустав-ная щель; 4 - высота суставного бугорка.

Расширение суставной щели на одной стороне и сужение ее на другой считают признаком смещения нижней челюсти в сторону, где суставная щель уже .

Внутренние и наружные отделы сустава определяются на фронтальных томограммах. Ввиду асимметрии расположения ВНЧС в пространстве лицевого черепа справа и слева на одной фронтальной томограмме не всегда удается получить изображение сустава с обеих сторон. Томограммы в аксиальной проекции применяют редко из-за сложной укладки пациента. В зависимости от задач исследования применяют томографию элементов ВНЧС в боковых проекциях в следующих положениях нижней челюсти: при максимальном смыкании челюстей; при максимальном открывании рта; в положении физиологического покоя нижней челюсти; в «привычной окклюзии».

При томографии в боковой проекции на томографе «Неодиагно-макс» укладывают больного на снимочный стол на живот, голову поворачивают в профиль таким образом, чтобы исследуемый сустав прилегал к кассете с пленкой. Сагиттальная плоскость черепа должна быть параллельна плоскости стола. При этом чаще всего используют глубину среза 2,5 см.

На томограммах ВНЧС в сагиттальной проекции при смыкании челюстей в положении центральной окклюзии в норме суставные головки занимают центрическое положение в суставных ямках. Контуры суставных поверхностей не изменены. Суставная щель в переднем, верхнем и заднем отделах симметрична справа и слева.

Средние размеры суставной щели (мм):

В переднем отделе - 2,2±0,5;
в верхнем отделе - 3,5±0,4;
в заднем отделе - 3,7+0,3.

На томограммах ВНЧС в сагиттальной проекции при открытом рте суставные головки располагаются против нижней трети суставных ямок или против вершин суставных бугров.

Для создания параллельности сагиттальной плоскости головы и плоскости стола томографа, неподвижности головы во время томографии и сохранения этого же положения при повторных исследованиях используют краниостат.

На томограммах в боковой проекции измеряют ширину отдельных участков суставной щели по методике И.И. Ужумецкене (рис. 3.29, б): оценивают размеры и симметричность суставных головок, высоту и наклон заднего ската суставных бугорков, амплитуду смещения суставных головок при переходе из положения центральной окклюзии в положение открытого рта.
Особый интерес представляет метод рентгенокинематографии ВНЧС. С помощью этого метода возможно изучение движения суставных головок в динамике [Петросов Ю.А., 1982].

Компьютерная томография

Компьютерная томография (КТ) позволяет получать прижизненные изображения тканевых структур на основании изучения степени поглощения рентгеновского излучения в исследуемой области. Принцип метода заключается в том, что исследуемый объект послойно просвечивается рентгеновским лучом в различных направлениях при движении рентгеновской трубки вокруг него. Непоглощенная часть излучения регистрируется с помощью специальных детекторов, сигналы от которых поступают в вычислительную систему (ЭВМ). После математической обработки полученных сигналов на ЭВМ строится изображение исследуемого слоя («среза») на матрице.

Высокая чувствительность метода КТ к изменениям рентгеновской плотности изучаемых тканей обусловлена тем, что получаемое изображение в отличие от обычного рентгеновского не искажается наложением изображений других структур, через которые проходит рентгеновский пучок. В то же время лучевая нагрузка на больного при КТ-исследовании ВНЧС не превышает таковую при обычной рентгенографии. По данным литературы, использование КТ и сочетание ее с другими дополнительными методами позволяют осуществить наиболее прецизионную диагностику, снизить лучевую нагрузку и решать те вопросы, которые решаются с трудом или совсем не решаются с помощью послойной рентгенографии.

Оценку степени поглощения излучения (рентгеновской плотности тканей) производят по относительной шкале коэффициентов поглощения (КП) рентгеновского излучения. В данной шкале за 0 ед. Н (Н - единица Хаунсфилда) принято поглощение в воде, за 1000 ед. Н. - в воздухе. Современные томографы позволяют улавливать различия плотностей в 4-5 ед. Н. На компьютерных томограммах более плотные участки, имеющие высокие значения КП, представляются светлыми, а менее плотные, имеющие низкие значения КП, темными.

С помощью современных компьютерных томографов III и IV поколений можно выделить слои толщиной 1,5 мм с моментальным воспроизведением изображения в черно-белом или цветном варианте, а также получить трехмерное реконструированное изображение исследуемой области. Метод позволяет бесконечно долго сохранять полученные томограммы на магнитных носителях и в любое время повторить их анализ посредством традиционных программ, заложенных в ЭВМ компьютерного томографа.

Преимущества КТ в диагностике патологии ВНЧС:

Полное воссоздание формы костных суставных поверхностей во всех плоскостях на основе аксиальных проекций (реконструктивное изображение);
обеспечение идентичности съемки ВНЧС справа и слева;
отсутствие наложений и проекционных искажений;
возможность изучения суставного диска и жевательных мышц;
воспроизведение изображения в любое время;
возможность измерения толщины суставных тканей и мышц и оценки ее с двух сторон.

Применение КТ для исследования ВНЧС и жевательных мышц впервые разработано в 1981 г. A.Hiils в диссертации, посвященной клинико-рентгенологическим исследованиям при функциональных нарушениях зубочелюстно-лицевой системы.

Основные показания к использованию КТ: переломы суставного отростка, краниофациальные врожденные аномалии, боковые смещения нижней челюсти, дегенеративные и воспалительные заболевания ВНЧС, опухоли ВНЧС, упорные суставные боли неясного генеза, неподдающиеся консервативной терапии.

КТ позволяет полностью воссоздать формы костных суставных поверхностей во всех плоскостях, не вызывает наложения изображений других структур и проекционных искажений [Хватова В.А., Корниенко В.И., 1991; Паутов И.Ю., 1995; Хватова В.А., 1996; Вязьмин А.Я., 1999; Westesson P., Brooks S., 1992, и др.]. Применение этого метода эффективно как для диагностики, так и дифференциальной диагностики органических изменений ВНЧС, не диагностируемых клинически. Решающее значение при этом имеет возможность оценки суставной головки в нескольких проекциях (прямые и реконструктивные срезы).

При дисфункции ВНЧС КТ-исследование в аксиальной проекции дает дополнительную информацию о состоянии костных тканей, положении продольных осей суставных головок, выявляет гипертрофию жевательных мышц (рис. 3.30).

КТ в сагиттальной проекции позволяет дифференцировать дисфункцию ВНЧС от других поражений сустава: травм, новообразований, воспалительных нарушений [Регtes R., Gross Sh., 1995, и др.].

На рис. 3.31 представлены КТ ВНЧС в сагиттальной проекции справа и слева и схемы к ним. Визуализировано нормальное положение суставных дисков.

Приводим пример использования КТ для диагностики заболевания ВНЧС.

Больная М ., 22 лет, обратилась с жалобами на боль и суставные щелчки справа при жевании в течение 6 лет. Во время обследования выявлено: при открывании рта нижняя челюсть смещается вправо, а затем зигзагообразно со щелчком влево, болезненная пальпация наружной крыловидной мышцы слева. Прикус ортогнатический с небольшим резцовым перекрытием, интактные зубные ряды, жевательные зубы справа стерты больше, чем слева; правосторонний тип жевания. При анализе функциональной окклюзии в полости рта и на моделях челюстей, установленных в артикулятор, выявлен балансирующий суперконтакт на дистальных скатах небного бугорка верхнего первого моляра (задержка стирания) и щечного бугорка второго нижнего моляра справа. На томограмме в сагиттальной проекции изменений не обнаружено. На КТ ВНЧС в той же проекции в положении центральной окклюзии смещение правой суставной головки назад, сужение заднесуставной щели, смещение вперед и деформация суставного диска (рис. 3.32, а). На КТ ВНЧС в аксиальной проекции толщина наружной крыловидной мышцы справа 13,8 мм, слева - 16,4 мм (рис. 3.32, б).

Диагноз: балансирующий суперконтакт небного бугорка 16 и щечного бугорка в левой боковой окклюзии,правосторонний тип жевания, гипертрофия наружной крыловидной мышцы слева, асимметрия размеров и положения суставных головок, мышечно-суставная дисфункция, дислокация кпереди диска ВНЧС справа, смещение суставной головки кзади.

Телерентгенография

Использование телерентгенографии в стоматологии позволило получать снимки с четкими контурами мягких и твердых структур лицевого скелета, проводить их метрический анализ и тем самым уточнять диагноз [Ужумецкене И.И., 1970; Трезубов В.Н., Фадеев Р.А., 1999, и др.].

Принцип метода заключается в получении рентгеновского снимка при большом фокусном расстоянии (1,5 м). При получении снимка с такого расстояния, с одной стороны, снижается лучевая нагрузка на пациента, с другой, уменьшается искажение лицевых структур. Применение цефалоста-тов обеспечивает получение идентичных снимков при повторных исследованиях.

Телерентгенограмма (ТРГ) в прямой проекции позволяет диагностировать аномалии зубочелюстной системы в трансверсальном направлении, в боковой проекции - в сагиттальном направлении. На ТРГ отображаются кости лицевого и мозгового черепа, контуры мягких тканей, что дает возможность изучить их соответствие. ТРГ используют как важный диагностический метод в ортодонтии, ортопедической стоматологии, челюстно-лице-вой ортопедии, ортогнатической хирургии. Применение ТРГ позволяет:
проводить диагностику различных заболеваний, в том числе аномалий и деформаций лицевого скелета;
планировать лечение этих заболеваний;
прогнозировать предполагаемые результаты лечения;
осуществлять контроль за ходом лечения;
объективно оценивать отдаленные результаты.

Так, при протезировании больных с деформациями окклюзионной поверхности зубных рядов использование ТРГ в боковой проекции дает возможность определить искомую протетическую плоскость, а следовательно, решить вопрос о степени сошлифовывания твердых тканей зубов и необходимости их девитализации.

При полном отсутствии зубов на телерентгенограмме можно на этапе постановки зубов проверить правильность нахождения окклюзионной поверхности.

Рентгеноцефалометрический анализ лица у пациентов с повышенной стираемостью зубов позволяет более точно дифференцировать форму данного заболевания, выбрать оптимальную тактику ортопедического лечения. Кроме того, оценив ТРГ, можно также получить информацию о степени атрофии альвеолярных частей верхней и нижней челюстей и определить конструкцию протеза.
Для расшифровки ТРГ снимок закрепляют на экране негатоскопа, прикрепляют к нему кальку, на которую переносят изображение.

Существует много методов анализа ТРГ в боковых проекциях. Одним из них является метод Шварца, основанный на использовании в качестве ориентира плоскости основания черепа. При этом можно определить:

Расположение челюстей по отношению к плоскости передней части основания черепа;
расположение ВНЧС по отношению к этой плоскости;
длину переднего основания че
репной ямки.

Анализ ТРГ - важный метод диагностики зубочелюстных аномалий, позволяющий выявить причины их формирования.

С помощью компьютерных средств можно не только повысить точность анализа ТРГ, сэкономить время их расшифровки, но и прогнозировать предполагаемые результаты лечения.

В.А.Хватова
Клиническая гнатология

Рентгенология как наука берет свое начало от 8 ноября 1895 г., когда немецкий физик профессор Вильгельм Конрад Рентген открыл лучи, впоследствии названные его именем. Сам Рентген назвал их X-лучами. Это название сохранилось на его родине и в странах запада.

Основные свойства рентгеновских лучей:

    Рентгеновские лучи, исходя из фокуса рентгеновской трубки, распространяются прямолинейно.

    Они не отклоняются в электромагнитном поле.

    Скорость распространения их равняется скорости света.

    Рентгеновские лучи невидимы, но, поглощаясь некоторыми веществами, они заставляют их светиться. Это свечение называется флюоресценцией, оно лежит в основе рентгеноскопии.

    Рентгеновские лучи обладают фотохимическим действием. На этом свойстве рентгеновских лучей основывается рентгенография (общепринятый в настоящее время метод производства рентгеновских снимков).

    Рентгеновское излучение обладает ионизирующим действием и придает воздуху способность проводить электрический ток. Ни видимые, ни тепловые, ни радиоволны не могут вызвать это явление. На основе этого свойства рентгеновское излучение, как и излучение радиоактивных веществ, называется ионизирующим излучением.

    Важное свойство рентгеновских лучей – их проникающая способность, т.е. способность проходить через тело и предметы. Проникающая способность рентгеновских лучей зависит:

    От качества лучей. Чем короче длина рентгеновских лучей (т.е., чем жестче рентгеновское излучение), тем глубже проникают эти лучи и, наоборот, чем длиннее волна лучей (чем мягче излучение), тем на меньшую глубину они проникают.

    От объема исследуемого тела: чем толще объект, тем труднее рентгеновские лучи «пробивают» его. Проникающая способность рентгеновских лучей зависит от химического состава и строения исследуемого тела. Чем больше в веществе, подвергаемом действию рентгеновских лучей, атомов элементов с высоким атомным весом и порядковым номером (по таблице Менделеева), тем сильнее оно поглощает рентгеновское излучение и, наоборот, чем меньше атомный вес, тем прозрачнее вещество для этих лучей. Объяснение этого явления в том, что в электромагнитных излучениях с очень малой длиной волны, каковыми являются рентгеновские лучи, сосредоточена большая энергия.

    Лучи Рентгена обладают активным биологическим действием. При этом критическими структурами являются ДНК и мембраны клетки.

Необходимо учитывать еще одно обстоятельство. Рентгеновские лучи подчиняются закону обратных квадратов, т.е. интенсивность рентгеновских лучей обратно пропорциональна квадрату расстояния.

Гамма-лучи обладают такими же свойствами, но эти виды излучений различаются по способу их получения: рентгеновское излучение получают на высоковольтных электрических установках, а гамма-излучение – вследствие распада ядер атомов.

Методы рентгенологического исследования делятся на основные и специальные, частные.

Основные рентгенологические методы: рентгенография, рентгеноскопия, компьютерная рентгеновская томография.

Рентгенографию и рентгеноскопию выполняют на рентгеновских аппаратах. Их основными элементами являются питающее устройство, излучатель (рентгеновская трубка), устройства для формирования рентгеновского излучения и приемники излучения. Рентгеновский аппарат

питается от городской сети переменным током. Питающее устройство повышает напряжение до 40-150 кВ и уменьшает пульсацию, в некоторых аппаратах ток практически постоянный. От величины напряжения зависит качество рентгеновского излучения, в частности, его проникающая способность. С увеличением напряжения энергия излучения возрастает. При этом уменьшается длина волны и увеличивается проникающая способность получаемого излучения.

Рентгеновская трубка − это электровакуумный прибор, преобразующий электрическую энергию в энергию рентгеновского излучения. Важным элементом трубки являются катод и анод.

При подаче тока низкого напряжения на катод нить накала нагревается и начинает испускать свободные электроны (электронная эмиссия), образуя электронное облако вокруг нити. При включении высокого напряжения электроны, испускаемые катодом, ускоряются в электрическом поле между катодом и анодом, летят от катода к аноду и, ударяясь о поверхность анода, тормозятся, выделяя кванты рентгеновского излучения. Для уменьшения влияния рассеянного излучения на информативность рентгенограмм используют отсеивающие решетки.

Приемниками рентгеновского излучения являются рентгеновская пленка, флюоресцирующий экран, системы цифровой рентгенографии, а в КТ – дозиметрические детекторы.

Рентгенография − рентгенологическое исследование, при котором получают изображение исследуемого объекта, фиксированное на светочувствительном материале. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Необходимым оснащением для рентгенографии являются кассеты с усиливающими экранами, отсеивающие решетки и специальная рентгеновская пленка. Для отсеивания мягких рентгеновских лучей, которые могут достигнуть пленки, а также вторичного излучения используются специальные подвижные решетки. Кассеты делаются из светонепроницаемого материала и по величине соответствуют стандартным размерам выпускаемой рентгеновской пленки (13 × 18 см, 18 × 24 см, 24 × 30 см, 30 × 40 см и др.).

Рентгеновская пленка покрывается обычно с двух сторон фотографической эмульсией. Эмульсия содержит кристаллы бромида серебра, которые ионизируются фотонами рентгеновских лучей и видимого света. Рентгеновская пленка находится в светонепроницаемой кассете вместе с рентгеновскими усиливающими экранами (РЭУ). РЭУ представляет собой плоскую основу, на которую наносят слой рентгенолюминофора. На рентгенографическую пленку действуют при рентгенографии не только рентгеновские лучи, но и свет от РЭУ. Усиливающие экраны предназначены для увеличения светового эффекта рентгеновых лучей на фотопленку. В настоящее время широко применяются экраны c люминофорами, активированными редкоземельными элементами: бромидом окиси лантана и сульфитом окиси гадолиния. Хороший коэффициент полезного действия люминофора редкоземельных элементов способствует высокой светочувствительности экранов и обеспечивает высокое качество изображения. Существуют и специальные экраны – Gradual, которые могут выравнивать имеющиеся различия в толщине и (или) плотности объекта съемки. Использование усиливающих экранов сокращает в значительной степени время экспозиции при рентгенографии.

Почернение рентгеновской пленки происходит вследствие восстановления металлического серебра под действием рентгеновского излучения и света в ее эмульсионном слое. Количество ионов серебра зависит от числа действующих на пленку фотонов: чем больше их количество, тем больше число ионов серебра. Изменяющаяся плотность ионов серебра формирует скрытое внутри эмульсии изображение, которое становится видимым после специальной обработки проявителем. Обработка заснятых пленок проводится в фотолаборатории. Процесс обработки сводится к проявлению, закреплению, промывке пленки с последующим высушиванием. В процессе проявления пленки осаждается металлическое серебро черного цвета. Неионизированные кристаллы бромида серебра остаются неизмененными и невидимыми. Фиксаж удаляет кристаллы бромида серебра, оставляя металлическое серебро. После фиксации пленка нечувствительна к свету. Сушка пленок проводится в сушильных шкафах, что занимает не менее 15 мин., или происходит естественным путем, при этом снимок бывает готовым на следующий день. При использовании проявочных машин снимки получают сразу после исследования. Изображение на рентгеновской пленке обусловлено различной степенью почернения, вызванного изменениями плотности черных гранул серебра. Наиболее темные области на рентгеновской пленке соответствуют наиболее высокой интенсивности излучения, поэтому изображение называют негативным. Белые (светлые) участки на рентгенограммах называют темными (затемнения), а черные − светлыми (просветления) (рис. 1.2).

Преимущества рентгенографии:

    Важное преимущество рентгенографии − высокое пространственное разрешение. По этому показателю с ней не может сравниться ни один метод визуализации.

    Доза ионизирующего излучения ниже, чем при рентгеноскопии и рентгеновской компьютерной томографии.

    Рентгенографию можно производить как в рентгеновском кабинете, так и непосредственно в операционной, перевязочной, гипсовальной или даже в палате (с помощью передвижных рентгеновских установок).

    Рентгеновский снимок является документом, который может храниться длительное время. Его могут изучать многие специалисты.

Недостаток рентгенографии: исследование статическое, отсутствует возможность оценки движения объектов в процессе исследования.

Цифровая рентгенография включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При цифровой рентгенографии аналоговая информация преобразуется в цифровую форму при помощи аналогово-цифровых преобразователей, обратный процесс происходит при помощи цифро-аналоговых преобразователей. Для показа изображения цифровая матрица (числовые строки и колонки) трансформируется в матрицу видимых элементов изображения − пикселов. Пиксел − воспроизводимый системой формирования изображения минимальный элемент картины. Каждому пикселу, в соответствии со значением цифровой матрицы, присваивается один из оттенков серой шкалы. Число возможных оттенков серой шкалы в диапазоне между черным и белым часто определяется на бинарной основе, например, 10 битов = 2 10 или 1024 оттенка.

В настоящее время технически реализованы и уже получили клиническое применение четыре системы цифровой рентгенографии:

− цифровая рентгенография с экрана электронно-оптического преобразователя (ЭОП);

− цифровая люминесцентная рентгенография;

− сканирующая цифровая рентгенография;

− цифровая селеновая рентгенография.

Система цифровой рентгенографии с экрана ЭОП состоит из экрана ЭОП, телевизионного тракта и аналого-цифрового преобразователя. В качестве детектора изображения используется ЭОП. Телевизионная камера превращает оптическое изображение на экране ЭОП в аналоговый видеосигнал, который далее при помощи аналого-цифрового преобразователя формируется в набор цифровых данных и передается в накопительное устройство. Затем эти данные компьютер переводит в видимое изображение на экране монитора. Изображение изучается на мониторе и может быть распечатано на пленке.

В цифровой люминесцентной рентгенографии люминесцентные запоминающие пластины после их экспонирования рентгеновским излучением сканируются специальным лазерным устройством, а возникающий в процессе лазерного сканирования световой пучок трансформируется в цифровой сигнал, воспроизводящий изображение на экране монитора, которое может распечатываться. Люминесцентные пластины встроены в кассеты, многократно используемые (от 10000 до 35000 раз) с любым рентгеновским аппаратом.

В сканирующей цифровой рентгенографии через все отделы исследуемого объекта последовательно пропускают движущийся узкий пучок рентгеновского излучения, которое затем регистрируется детектором и после оцифровки в аналого-цифровом преобразователе передается на экран монитора компьютера с возможной последующей распечаткой.

Цифровая селеновая рентгенография в качестве приемника рентгеновского излучения использует детектор, покрытый слоем селена. Формирующееся в селеновом слое после экспонирования скрытое изображение в виде участков с различными электрическими зарядами считывается с помощью сканирующих электродов и трансформируется в цифровой вид. Далее изображение можно рассматривать на экране монитора или распечатывать на пленку.

Преимущества цифровой рентгенографии:

    снижение дозовых нагрузок на пациентов и медицинский персонал;

    экономичность в эксплуатации (во время съемки сразу получают изображение, отпадает необходимость использования рентгеновской пленки, других расходных материалов);

    высокая производительность (около 120 изображений в час);

    цифровая обработка изображений улучшает качество снимка и тем самым повышает диагностическую информативность цифровой рентгенографии;

    дешевое цифровое архивирование;

    быстрый поиск рентгеновского изображения в памяти ЭВМ;

    воспроизведение изображения без потерь его качества;

    возможность объединения в единую сеть различного оборудования отделения лучевой диагностики;

    возможность интеграции в общую локальную сеть учреждения («электронная история болезни»);

    возможность организации удаленных консультаций («телемедицина»).

Качество изображения при использовании цифровых систем может быть охарактеризовано, как и при других лучевых методах, такими физическими параметрами, как пространственное разрешение и контраст. Контраст теневой − это разница оптических плотностей между соседними участками изображения. Пространственное разрешение − это минимальное расстояние между двумя объектами, при котором на изображении их еще можно отделить один от другого. Оцифровка и обработка изображения приводят к дополнительным диагностическим возможностям. Так, существенной отличительной особенностью цифровой рентгенографии является больший динамический диапазон. То есть, рентгеновские снимки с помощью цифрового детектора будут хорошего качества в большем диапазоне доз рентгеновского излучения, чем при обычной рентгенографии. Возможность свободной настройки контрастности изображения при цифровой обработке также является существенным различием между традиционной и цифровой рентгенографией. Передача контраста, таким образом, не ограничена выбором приемника изображения и параметров исследования и может дополнительно приспосабливаться к решению диагностических задач.

Рентгеноскопия – просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов органов и систем, а также тканей по теневой картине флюоресцирующего экрана. Исследование выполняется в реальном масштабе времени, т.е. производство изображения и получение его исследователем совпадают во времени. При рентгеноскопии получают позитивное изображение. Видимые на экране светлые участки называют светлыми, а темные − темными.

Преимущества рентгеноскопии:

    позволяет исследовать больных в различных проекциях и позициях, в силу чего можно выбрать положение, при котором лучше выявляется патологическое образование;

    возможность изучения функционального состояния ряда внутренних органов: легких, при различных фазах дыхания; пульсацию сердца с крупными сосудами, двигательную функцию пищеварительного канала;

    тесное контактирование врача-рентгенолога с больным, что позволяет дополнить рентгенологическое исследование клиническим (пальпация под визуальным контролем, целенаправленный анамнез) и т.д.;

    возможность выполнения манипуляций (биопсий, катетеризаций и др.) под контролем рентгеновского изображения.

Недостатки:

    сравнительно большая лучевая нагрузка на больного и обслуживающий персонал;

    малая пропускная способность за рабочее время врача;

    ограниченные возможности глаза исследователя в выявлении мелких тенеобразований и тонких структур тканей; показания к рентгеноскопии ограничены.

Электронно–оптическое усиление (ЭОУ). Оно основано на принципе преобразования рентгеновского изображения в электронное с последующим его превращением в усиленное световое. Рентгеновский ЭОП представляет собой вакуумную трубку (рис. 1.3). Рентгеновские лучи, несущие изображение от просвечиваемого объекта, попадают на входной люминесцентный экран, где их энергия преобразуется в световую энергию излучения входного люминесцентного экрана. Далее фотоны, испускаемые люминесцентным экраном, попадают на фотокатод, преобразующий световое излучение в поток электронов. Под воздействием постоянного электрического поля высокого напряжения (до 25 кВ) и в результате фокусировки электродами и анодом специальной формы энергия электронов возрастает в несколько тысяч раз и они направляются на выходной люминесцентный экран. Яркость свечения выходного экрана усиливается до 7 тысяч раз, по сравнению с входным экраном. Изображение с выходного люминесцентного экрана при помощи телевизионной трубки передается на экран дисплея. Применение ЭОУ позволяет различать детали величиной 0,5 мм, т.е. в 5 раз более мелкие, чем при обычном рентгеноскопическом исследовании. При использовании этого метода может применяться рентгенокинематография, т.е. запись изображения на кино- или видеопленку и оцифровывание изображения при помощи аналого-цифрового преобразователя.

Рис. 1.3. Схема ЭОП. 1− рентгеновская трубка; 2 − объект; 3 − входной люминесцентный экран; 4 − фокусирующие электроды; 5 − анод; 6 − выходной люминесцентный экран; 7 − внешняя оболочка. Пунктирными линиями обозначен поток электронов.

Рентгеновская компьютерная томография (КТ). Создание рентгеновской компьютерной томографии явилось важнейшим событием в лучевой диагностике. Свидетельством этого является присуждение Нобелевской премии в 1979 г. известным ученым Кормаку (США) и Хаунсфилду (Англия) за создание и клиническое испытание КТ.

КТ позволяет изучить положение, форму, размеры и структуру различных органов, а также их соотношение с другими органами и тканями. Успехи, достигнутые с помощью КТ в диагностике различных заболеваний, послужили стимулом быстрого технического совершенствования аппаратов и значительного увеличения их моделей.

В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами и создание рентгеновского изображения органов и тканей с помощью ЭВМ. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, изучаемое на мониторе (рис. 1.4).

Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных сканов). На основе аксиальных сканов получают реконструкцию изображения в других плоскостях.

В практике рентгенологии в настоящее время используется, в основном, три типа компьютерных томографов: обычные шаговые, спиральные или винтовые, многосрезовые.

В обычных шаговых компьютерных томографах высокое напряжение к рентгеновской трубке подается по высоковольтным кабелям. Из-за этого трубка не может вращаться постоянно, а должна выполнять качающиеся движения: один оборот по часовой стрелке, остановка, один оборот против часовой стрелки, остановка и обратно. В результате каждого вращения получают одно изображение толщиной 1 – 10 мм за 1 – 5 сек. В промежутке между срезами стол томографа с пациентом передвигается на установленную дистанцию в 2 – 10 мм, и измерения повторяются. При толщине среза 1 – 2 мм шаговые аппараты позволяют выполнять исследование в режиме «высокого разрешения». Но эти аппараты обладают рядом недостатков. Продолжительность сканирования относительно большая, и на изображениях могут появляться артефакты от движения и дыхания. Реконструкция изображения в проекциях, отличных от аксиальных, трудновыполнима или просто невозможна. Серьезные ограничения имеются при выполнении динамического сканирования и исследований с контрастным усилением. Кроме того, могут быть не выявлены малоразмерные образования между срезами при неравномерном дыхании пациента.

В спиральных (винтовых) компьютерных томографах постоянное вращение трубки совмещено с одновременным перемещением стола пациента. Таким образом, при исследовании получают информацию сразу от всего исследуемого объема тканей (целиком голова, грудная клетка), а не от отдельных срезов. При спиральной КТ возможна трехмерная реконструкция изображения (3D-режим) с высоким пространственным разрешением, в том числе виртуальная эндоскопия, позволяющая визуализировать внутреннюю поверхность бронхов, желудка, толстой кишки, гортани, придаточных пазух носа. В отличие от эндоскопии при помощи волоконной оптики, сужение просвета исследуемого объекта не является препятствием для виртуальной эндоскопии. Но в условиях последней цвет слизистой оболочки отличается от естественного и невозможно выполнить биопсию (рис. 1.5).

В шаговых и спиральных томографах используют один или два ряда детекторов. Многосрезовые (мультидетекторные) компьютерные томографы снабжены 4, 8, 16, 32 и даже 128 рядами детекторов. В многосрезовых аппаратах значительно сокращается время сканирования и улучшается пространственная разрешающая способность в аксиальном направлении. На них можно получать информацию с использованием методики высокого разрешения. Значительно улучшается качество мультипланарных и объемных реконструкций. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием:

    Прежде всего, высокой чувствительностью, что позволяет дифференцировать отдельные органы и ткани друг от друга по плотности в пределах до 0,5%; на обычных рентгенограммах этот показатель составляет 10-20% .

    КТ позволяет получить изображение органов и патологических очагов только в плоскости исследуемого среза, что дает четкое изображение без наслоения лежащих выше и ниже образований.

    КТ дает возможность получить точную количественную информацию о размерах и плотности отдельных органов, тканей и патологических образований.

    КТ позволяет судить не только о состоянии изучаемого органа, но и о взаимоотношении патологического процесса с окружающими органами и тканями, например, инвазию опухоли в соседние органы, наличие других патологических изменений.

    КТ позволяет получить топограммы, т.е. продольное изображение исследуемой области наподобие рентгеновского снимка, путем смещения больного вдоль неподвижной трубки. Топограммы используются для установления протяженности патологического очага и определения количества срезов.

    При спиральной КТ в условиях трехмерной реконструкции можно выполнить виртуальную эндоскопию.

    КТ незаменима при планировании лучевой терапии (составление карт облучения и расчета доз).

Данные КТ могут быть использованы для диагностической пункции, которая может с успехом применяться не только для выявления патологических изменений, но и для оценки эффективности лечения и, в частности, противоопухолевой терапии, а также определения рецидивов и сопутствующих осложнений.

Диагностика с помощью КТ основана на прямых рентгенологических признаках, т.е. определении точной локализации, формы, размеров отдельных органов и патологического очага и, что особенно важно, на показателях плотности или абсорбции. Показатель абсорбции основан на степени поглощения или ослабления пучка рентгеновского излучения при прохождении через тело человека. Каждая ткань, в зависимости от плотности атомной массы, по-разному поглощает излучение, поэтому в настоящее время для каждой ткани и органа в норме разработан коэффициент абсорбции (КА), обозначаемый в единицах Хаунсфилда (HU). HUводы принимают за 0; кости, обладающие наибольшей плотностью – за +1000, воздух, имеющий наименьшую плотность, – за − 1000.

При КТ весь диапазон серой шкалы, в котором представлено изображение томограмм на экране видеомонитора, составляет от – 1024 (уровень черного цвета) до + 1024 HU (уровень белого цвета). Таким образом, при КТ «окно», то есть диапазон изменений HU (единиц Хаунсфилда) измеряется от – 1024 до + 1024 HU. Для визуального анализа информации в серой шкале необходимо ограничить «окно» шкалы соответственно изображению тканей с близкими показателями плотности. Последовательно изменяя величину «окна», можно изучить в оптимальных условиях визуализации разные по плотности участки объекта. Например, для оптимальной оценки легких уровень черного цвета выбирают, близко к средней плотности легких (между – 600 и – 900 HU). Под «окном» с шириной 800 с уровнем – 600 HU подразумевается, что плотности – 1000 HU видны как черные, а все плотности – 200 HU и свыше – как белые. Если то же изображение используется для оценки деталей костных структур грудной клетки, «окно» шириной 1000 и уровнем + 500 HU создаст полную серую шкалу в диапазоне между 0 и + 1000 HU. Изображение при КТ изучается на экране монитора, помещается в долговременную память компьютера или получается на твердом носителе − фотопленке. Светлые участки на компьютерной томограмме (при черно-белом изображении) называют «гиперденсивными», а темные − «гиподенсивными». Денсивность означает плотность исследуемой структуры (рис. 1.6).

Минимальная величина опухоли или другого патологического очага, определяемого с помощью КТ, колеблется от 0,5 до 1 см при условии, чтоHUпораженной ткани отличается от такового здоровой на 10 - 15 ед.

Недостатком КТ является увеличение лучевой нагрузки на пациентов. В настоящее время на КТ приходится 40% от коллективной дозы облучения, получаемой пациентами при рентгенодиагностических процедурах, тогда как КТ-исследование составляет лишь 4% от числа всех рентгенологических исследований.

Как в КТ, так и при рентгенологических исследованиях возникает необходимость применения для увеличения разрешающей способности методики “усиления изображения”. Контрастирование при КТ производится с водорастворимыми рентгеноконтрастными средствами.

Методика “усиления“ осуществляется перфузионным или инфузионным введением контрастного вещества.

Методы рентгенологического исследования называются специальными, если используется искусственное контрастирование. Органы и ткани человеческого организма становятся различимыми, если они поглощают рентгеновские лучи в различной степени. В физиологических условиях такая дифференциация возможна только при наличии естественной контрастности, которая обусловливается разницей в плотности (химическом составе этих органов), величине, положении. Хорошо выявляется костная структура на фоне мягких тканей, сердца и крупных сосудов на фоне воздушной легочной ткани, однако камеры сердца в условиях естественной контрастности невозможно выделить отдельно, как, например, и органы брюшной полости. Необходимость изучения рентгеновскими лучами органов и систем, имеющих одинаковую плотность, привело к созданию методики искусственного контрастирования. Сущность этой методики заключается во введении в исследуемый орган искусственных контрастных веществ, т.е. веществ, имеющих плотность, отличающуюся от плотности органа и окружающей его среды (рис. 1.7).

Рентгеноконтрастные средства (РКС) принято подразделять на вещества с высоким атомным весом (рентгено-позитивные контрастные вещества) и низким (рентгено-негативные контрастные вещества). Контрастные вещества должны быть безвредными.

Контрастные вещества, интенсивно поглощающие рентгеновские лучи (позитивные рентгеноконтрастные средства) это:

    Взвеси солей тяжелых металлов – сернокислый барий, применяемый для исследования ЖКТ (он не всасывается и выводится через естественные пути).

    Водные растворы органических соединений йода – урографин, верографин, билигност, ангиографин и др., которые вводятся в сосудистое русло, с током крови попадают во все органы и дают, кроме контрастирования сосудистого русла, контрастирование других систем - мочевыделительной, желчного пузыря и т.д.

    Масляные растворы органических соединений йода – йодолипол и др., которые вводятся в свищи и лимфатические сосуды.

Неионные водорастворимые йодсодержащие рентгеноконтрастные средства: ультравист, омнипак, имагопак, визипак характеризуются отсутствием в химической структуре ионных групп, низкой осмолярностью, что значительно уменьшает возможность патофизиологических реакций, и тем самым обусловливается низкое количество побочных эффектов. Неионные йодсодержащие рентгеноконтрастные средства обусловливают более низкое количество побочных эффектов, чем ионные высокоосмолярные РКС.

Рентгенонегативные, или отрицательные контрастные вещества, – воздух, газы «не поглощают» рентгеновские лучи и поэтому хорошо оттеняют исследуемые органы и ткани, которые обладают большой плотностью.

Искусственное контрастирование по способу введения контрастных препаратов подразделяется на:

    Введение контрастных веществ в полость исследуемых органов (самая большая группа). Сюда относятся исследования ЖКТ, бронхография, исследования свищей, все виды ангиографии.

    Введение контрастных веществ вокруг исследуемых органов – ретропневмоперитонеум, пневморен, пневмомедиастинография.

    Введение контрастных веществ в полость и вокруг исследуемых органов. К этой группе относится париетография. Париетография при заболеваниях органов ЖКТ заключается в получении снимков стенки исследуемого полого органа после введения газа вначале вокруг органа, а затем в полость этого органа.

    Способ, в основе которого лежит специфическая способность некоторых органов концентрировать отдельные контрастные препараты и при этом оттенять их на фоне окружающих тканей. Сюда относятся выделительная урография, холецистография.

Побочное действие РКС. Реакции организма на введение РКС наблюдаются примерно в 10% случаев. По характеру и степени тяжести они делятся на 3 группы:

    Осложнения, связанные с проявлением токсического действия на различные органы с функциональными и морфологическими их поражениями.

    Нервно-сосудистая реакция сопровождается субъективными ощущениями (тошнота, ощущение жара, общая слабость). Объективные симптомы при этом – рвота, понижение артериального давления.

    Индивидуальная непереносимость РКС с характерными симптомами:

    1. Со стороны центральной нервной системы – головные боли, головокружение, возбуждение, беспокойство, чувство страха, возникновение судорожных припадков, отек головного мозга.

      Кожные реакции – крапивница, экзема, зуд и др.

      Симптомы, связанные с нарушением деятельности сердечно-сосудистой системы – бледность кожных покровов, неприятные ощущения в области сердца, падение артериального давления, пароксизмальная тахи- или брадикардия, коллапс.

      Симптомы, связанные с нарушением дыхания – тахипноэ, диспноэ, приступ бронхиальной астмы, отек гортани, отек легких.

Реакции непереносимости РКС иногда носят необратимый характер и приводят к летальному исходу.

Механизмы развития системных реакций во всех случаях имеют сходный характер и обусловлены активацией системы комплемента под воздействием РКС, влиянием РКС на свертывающую систему крови, высвобождением гистамина и других биологически активных веществ, истинной иммунной реакцией или сочетанием этих процессов.

В легких случаях побочных реакций достаточно прекратить инъекцию РКС и все явления, как правило, проходят без терапии.

При развитии выраженных побочных реакций первичная неотложная помощь должна начинаться на месте производства исследования сотрудниками рентгеновского кабинета. Прежде всего, надо немедленно прекратить внутривенное введение рентгеноконтрастного препарата, вызвать врача, в обязанности которого входит оказание неотложной медицинской помощи, наладить надежный доступ к венозной системе, обеспечить проходимость дыхательных путей, для чего нужно повернуть голову больного на бок и фиксировать язык, а также обеспечить возможность проведения (при необходимости) ингаляции кислорода со скоростью 5 л/мин. При появлении анафилактических симптомов необходимо провести следующие неотложные противошоковые мероприятия:

− ввести внутримышечно 0,5-1,0 мл 0,1% раствора адреналина гидрохлорида;

− при отсутствии клинического эффекта с сохранением выраженной гипотонии (ниже 70 мм рт. ст.) начать внутривенную инфузию со скорость 10 мл/ч (15-20 капель в одну минуту) смеси из 5 мл 0,1% раствора адреналина гидрохлорида, разведенного в 400 мл 0,9% раствора натрия хлорида. При необходимости скорость инфузии может быть повышена до 85 мл/ч;

− при тяжелом состоянии пациента дополнительно внутривенно ввести один из препаратов глюкокортикоидов (метилпреднизолон 150 мг, дексаметазон 8-20 мг, гидрокортизона гемисукцинат 200-400 мг) и один из антигистаминных препаратов (димедрол 1%-2,0 мл, супрастин 2% -2,0 мл, тавегил 0,1%-2,0 мл). Введение пипольфена (дипразина) противопоказано в связи с возможностью развития гипотонии;

− при адреналинрезистентном бронхоспазме и приступе бронхиальной астмы внутривенно медленно ввести 10, 0 мл 2,4% раствора эуфиллина. В случае отсутствия эффекта повторно ввести такую же дозу эуфиллина.

В случае клинической смерти осуществлять искусственное дыхание «рот в рот» и непрямой массаж сердца.

Все противошоковые мероприятия необходимо проводить максимально быстро до нормализации артериального давления и восстановления сознания больного.

При развитии умеренных вазоактивных побочных реакций без существенного нарушения дыхания и кровообращения, а также при кожных проявлениях неотложная помощь может быть ограничена введением только антигистаминных препаратов и глюкокортикоидов.

При отеке гортани, наряду с этими препаратами, следует внутривенно ввести 0,5 мл 0,1% раствора адреналина и 40-80 мг лазикса, а также обеспечить ингаляцию увлажненного кислорода. После осуществления обязательной противошоковой терапии, независимо от тяжести состояния, больной должен быть госпитализирован для продолжения интенсивной терапии и проведения восстановительного лечения.

В связи с возможностью развития побочных реакций все рентгенологические кабинеты, в которых проводятся внутрисосудистые рентгеноконтрастные исследования, должны иметь инструменты, приборы и медикаменты, необходимые для оказания неотложной медицинской помощи.

Для профилактики побочного действия РКС накануне проведения рентгеноконтрастного исследования применяют премедикацию антигистаминными и глюкокортикоидными препаратами, а также проводят один из тестов для прогнозирования повышенной чувствительности больного к РКС. Наиболее оптимальными тестами являются: определение высвобождения гистамина из базофилов периферической крови при смешивании ее с РКС; содержания общего комплемента в сыворотке крови больных, назначенных для проведения рентгеноконтрастного обследования; отбор больных для премедикации путем определения уровней сывороточных иммуноглобулинов.

Среди более редких осложнений могут иметь место «водное» отравление при ирригоскопии у детей с мегаколон и газовая (либо жировая) эмболия сосудов.

Признаком «водного» отравления, когда быстро всасывается через стенки кишки в кровеносное русло большое количество воды и наступает дисбаланс электролитов и белков плазмы, могут быть тахикардия, цианоз, рвота, нарушение дыхания с остановкой сердца; может наступить смерть. Первая помощь при этом – внутривенное введение цельной крови или плазмы. Профилактикой осложнения является проведение ирригоскопии у детей взвесью бария в изотоническом растворе соли, вместо водной взвеси.

Признаки эмболии сосудов следующие: появление ощущения стеснения в груди, одышка, цианоз, урежение пульса и падение артериального давления, судороги, прекращение дыхания. При этом следует немедленно прекратить введение РКС, уложить больного в положение Тренделенбурга, приступить к искусственному дыханию и непрямому массажу сердца, ввести внутривенно 0,1% - 0,5 мл раствора адреналина и вызвать реанимационную бригаду для возможной интубации трахеи, осуществления аппаратного искусственного дыхания и проведения дальнейших лечебных мероприятий.

Частные рентгенологические методы. Флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на флюорографическую пленку фотоаппаратом. Размер пленки 110×110 мм, 100×100 мм, реже − 70×70 мм. Исследование выполняют на специальном рентгеновском аппарате − флюорографе. В нем имеются флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения производится при помощи фотокамеры на рулонную пленку (рис. 1.8). Метод применяется при массовом обследовании для распознавания туберкулеза легких. Попутно могут быть обнаружены и другие заболевания. Флюорография более экономична и производительна, чем рентгенография, но существенно уступает ей по информативности. Доза излучения при флюорографии больше, чем при рентгенографии.

Рис. 1.8. Схема флюорографии. 1− рентгеновская трубка; 2 − объект; 3 − люминесцентный экран; 4− линзовая оптика; 5 − фотокамера.

Линейная томография предназначена для устранения суммационного характера рентгеновского изображения. В томографах для линейной томографии приводится в движение в противоположных направлениях рентгеновская трубка и кассета с пленкой (рис 1.9).

Во время перемещения трубки и кассеты в противоположных направлениях образуется ось движения трубки − слой, который остается как бы фиксированным, и на томографическом снимке детали этого слоя отображаются в виде тени с довольно резкими очертаниями, а ткани выше и ниже слоя оси движения получаются размазанными и не выявляются на снимке указанного слоя (рис. 1.10).

Линейные томограммы можно выполнять в сагиттальной, фронтальной и промежуточной плоскостях, что недостижимо при шаговой КТ.

Рентгенодиапевтика – лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством (интервенционная радиология).

Интервенционно-радиологические вмешательства в настоящее время включают: а) транскатетерные вмешательства на сердце, аорте, артериях и венах: реканализация сосудов, разобщение врожденных и приобретенных артериовенозных соустий, тромбэктомии, эндопротезирование, установка стентов и фильтров, эмболизация сосудов, закрытие дефектов межпредсердной и межжелудочковой перегородок, селективное введение лекарств в различные отделы сосудистой системы; б) чрескожное дренирование, пломбировка и склерозирование полостей различной локализации и происхождения, а также дренирование, дилатация, стентирование и эндопротезирование протоков разных органов (печени, поджелудочной железы, слюнной железы, слезноносового канала и пр.); в) дилатация, эндопротезирование, стентирование трахеи, бронхов, пищевода, кишки, дилатация кишечных стриктур; г) пренатальные инвазивные процедуры, лучевые вмешательства на плоде под контролем ультразвука, реканализация и стентирование маточных труб; д) удаление инородных тел и конкрементов различной природы и разной локализации. В качестве навигационного (направляющего) исследования, помимо рентгенологического, применяют ультразвуковой метод, а ультразвуковые аппараты снабжают специальными пункционными датчиками. Виды интервенционных вмешательств постоянно расширяются.

В конечном итоге, предметом изучения в рентгенологии является теневое изображение. Особенностями теневого рентгеновского изображения являются:

    Изображение, складывающееся из многих темных и светлых участков – соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта.

    Размеры рентгеновского изображения всегда увеличены (кроме КТ), по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние (отстояние пленки от фокуса рентгеновской трубки) (рис. 1.11).

    Когда объект и пленка не в параллельных плоскостях, изображение искажается (рис. 1.12).

    Изображение суммационное (кроме томографии) (рис. 1.13). Следовательно, рентгеновские снимки должны быть произведены не менее, чем в двух взаимно перпендикулярных проекциях.

    Негативное изображение при рентгенографии и КТ.

Каждая ткань и патологические образования, выявляемые при лучевом

Рис. 1.13. Суммационный характер рентгеновского изображения при рентгенографии и рентгеноскопии. Субтракция (а) и суперпозиция (б) теней рентгеновского изображения.

исследовании, характеризуются строго определенными признаками, а именно: числом, положением, формой, размером, интенсивностью, структурой, характером контуров, наличием или отсутствием подвижности, динамикой во времени.

Рентген костей является одним из самых распространенных исследований, проводимых в современной медицинской практике. Большинство людей знакомы с данной процедурой, поскольку возможности для применения данного метода очень обширны. Список показаний для рентгена костей включает большое количество заболеваний. Одни лишь травмы и переломы конечностей требуют неоднократного проведения рентгеновского исследования.

Рентген костей проводится с использованием различной аппаратуры, также существует разнообразие методов данного исследования. Применение вида рентгеновского исследования зависит от конкретной клинической ситуации, возраста пациента, основного заболевания и сопутствующих факторов. Лучевые методы диагностики являются незаменимыми в диагностике заболеваний костной системы и играют главную роль в постановке диагноза.

Существуют следующие виды рентгеновского исследования костей:

  • пленочная рентгенография;
  • цифровая рентгенография;
  • рентгеновская денситометрия;
  • рентген костей с использованием контрастных веществ и некоторые другие методы.

Что такое рентген?

Рентген является одним из видов электромагнитного излучения. Данный вид электромагнитной энергии был открыт в 1895 году. К электромагнитному излучению также относится солнечный свет, а также свет от любого искусственного освещения. Рентгеновские лучи используются не только в медицине, а встречаются также и в обычной природе. Около 1% излучения Солнца доходит до Земли в виде рентгеновских лучей, что формирует естественный радиационный фон.

Искусственное получение рентгеновских лучей стало возможным благодаря Вильгельму Конраду Рентгену, в честь которого они и названы. Он также первым обнаружил возможность их применения в медицине для «просвечивания» внутренних органов, в первую очередь - костей. Впоследствии данная технология развивалась, появлялись новые способы применения рентгеновского излучения, снижалась доза облучения.

Одним из негативных свойств рентгеновского излучения является его способность вызывать ионизацию в веществах, через которые оно проходит. Из-за этого рентгеновское излучение названо ионизирующим. В больших дозах рентген может привести к лучевой болезни . Первые десятилетия после открытия рентгеновских лучей данная особенность была неизвестной, что приводило к заболеваниям как у врачей, так и у пациентов. Однако сегодня доза рентгеновского излучения тщательно контролируется и можно с уверенностью говорить о том, что вредом от рентгеновского излучения можно пренебречь.

Принцип получения рентгеновского снимка

Для получения рентгеновского снимка необходимы три компонента. Первый из них – это источник рентгеновского излучения. Источником рентгеновского излучения служит рентгеновская трубка. В ней под действием электрического тока происходит взаимодействие определенных веществ и высвобождение энергии, из которой большая часть выделяется в виде тепла, а незначительная часть – в виде рентгеновского излучения. Рентгеновские трубки находятся в составе всех рентгеновских установок и требуют значительного охлаждения.

Вторым компонентом для получения снимка является исследуемый объект. В зависимости от его плотности происходит частичное поглощение рентгеновских лучей. Благодаря разнице тканей человеческого организма за пределы тела проникает рентгеновское излучение различной мощности, что оставляет на снимке различные пятна. Там, где рентгеновское излучение было поглощено в большей степени, остаются тени, а там где оно прошло практически неизменно – образуются просветления.

Третьим компонентом для получения рентгеновского снимка является приемник рентгеновского излучения. Он может быть пленочным или цифровым (рентгеночувствительный датчик ). Наиболее часто сегодня используется в качестве приемника рентгеновская пленка. Она обработана специальной эмульсией с содержанием серебра, которая изменяется при попадании на нее рентгеновских лучей. Зоны просветления на снимке имеют темный оттенок, а тени – белый оттенок. Здоровые кости имеют высокую плотность и оставляют равномерную тень на снимке.

Цифровой и пленочный рентген костей

Первые методики рентгеновского исследования подразумевали использование в качестве принимающего элемента фоточувствительного экрана или пленки. Сегодня рентгеновская пленка является наиболее часто используемым приемником рентгеновских лучей. Однако уже в ближайшие десятилетия цифровая рентгенография полностью заменит пленочную, так как обладает рядом неоспоримых преимуществ. В цифровой рентгенографии принимающим элементом являются сенсоры, чувствительные к рентгеновскому излучению.

Цифровая рентгенография обладает следующими преимуществами по сравнению с пленочной рентгенографией:

  • возможность уменьшить дозу облучения благодаря более высокой чувствительности цифровых датчиков;
  • увеличение точности и разрешения снимка;
  • простота и скорость получения снимка, отсутствие необходимости обрабатывать фоточувствительную пленку;
  • легкость хранения и обработки информации;
  • возможность быстрой передачи информации.
Единственным недостатком цифровой рентгенографии является несколько более высокая стоимость аппаратуры по сравнению с обычной рентгенографией. Из-за этого не во всех медицинских центрах можно найти данное оборудование. По возможности пациентам рекомендуется выполнять именно цифровой рентген, так как он дает более полную диагностическую информацию и вместе с тем менее вреден.

Рентген костей с контрастным веществом

Рентгенография костей конечностей может быть выполнена с применением контрастных веществ. В отличие от других тканей организма, кости обладают высокой естественной контрастностью. Поэтому контрастные вещества применяются для уточнения образований, смежных с костями – мягких тканей, суставов, сосудов. Данные техники рентгена применяются не так часто, однако в некоторых клинических ситуациях они являются незаменимыми.

Существуют следующие рентгеноконтрастные методики исследования костей:

  • Фистулография. Данная методика подразумевает заполнение свищевых ходов контрастными веществами (йодолипол, сульфат бария ). Свищи образуются в костях при воспалительных заболеваниях, таких как остеомиелит . После исследования вещество удаляют из свищевого хода с помощью шприца.
  • Пневмография. Данное исследование подразумевает введение газа (воздух, кислород, закись азота ) объемом около 300 кубических сантиметров в мягкие ткани. Пневмография выполняется, как правило, при травматических повреждениях, совмещенных с размозжением мягких тканей, оскольчатых переломах.
  • Артрография. Данный метод включает заполнение полости сустава жидким рентгеноконтрастным препаратом. Объем контрастного вещества зависит от объема полости сустава. Наиболее часто артрография выполняется на коленном суставе. Данная методика позволяет оценить состояние суставных поверхностей костей, включенных в сустав.
  • Ангиография костей. Данный вид исследования подразумевает введение контрастного вещества в сосудистое русло. Исследование сосудов костей применяется при опухолевых образованиях, для уточнения особенностей ее роста и кровоснабжения. В злокачественных опухолях диаметр и расположение сосудов являются неравномерными, количество сосудов обычно больше, чем в здоровых тканях.
Рентген костей должен быть выполнен с целью точной постановки диагноза. В большинстве случаев использование контрастного вещества позволяет получить более точную информацию и оказать более качественную помощь пациенту. Однако необходимо учитывать, что использование контрастных веществ имеет некоторые противопоказания и ограничения. Техника использования контрастных веществ требует времени и наличия опыта у врача-рентгенолога.

Рентген и компьютерная томография (КТ ) костей

Компьютерная томография – рентгеновский метод, который обладает повышенной точностью и информативностью. На сегодняшний день компьютерная томография представляет собой самый лучший метод исследования костной системы. С помощью КТ можно получить трехмерное изображение любой кости в организме или срезы через любую кость во всех возможных проекциях. Метод является точным, но наряду с этим создает высокую лучевую нагрузку.

Преимуществами КТ перед стандартной рентгенографией являются:

  • высокое разрешение и точность метода;
  • возможность получения любой проекции, в то время как рентген осуществляется обычно не более чем в 2 – 3 проекциях;
  • возможность трехмерной реконструкции исследуемой части тела;
  • отсутствие искажений, соответствие линейных размеров;
  • возможность одновременного обследования костей, мягких тканей и сосудов;
  • возможность проведения обследования в реальном времени.
Компьютерная томография проводится в случаях, когда необходимо диагностировать такие сложные заболевания как остеохондроз , межпозвоночные грыжи , опухолевые заболевания. В случаях, когда диагностика не представляет особых затруднений, проводится обычная рентгенография. Необходимо учитывать высокую лучевую нагрузку данного метода, из-за чего КТ не рекомендуется проводить чаще, чем раз в год.

Рентген костей и магнитно-резонансная томография (МРТ )

Магнитно-резонансная томография (МРТ ) – сравнительно новый метод диагностики. МРТ позволяет получить точное изображение внутренних структур организма во всех возможных плоскостях. С помощью средств компьютерного моделирования МРТ дает возможность выполнить трехмерную реконструкцию органов и тканей человека. Основным преимуществом МРТ является полное отсутствие лучевой нагрузки.

Принцип работы магнитно-резонансного томографа заключается в придании атомам, из которых построен организм человека, магнитного импульса. После этого считывается энергия, освобожденная атомами при возвращении к исходному состоянию. Одним из ограничений данного метода является невозможность применения при наличии в организме металлических имплантатов, кардиостимуляторов .

При выполнении МРТ обычно проводится измерение энергии атомов водорода. Водород в организме человека встречается наиболее часто в составе соединений воды. В костях вода содержится в гораздо меньших объемах, чем в других тканях организма, поэтому при исследовании костей МРТ дает менее точные результаты, чем при исследовании других областей организма. В этом МРТ уступает КТ, однако все равно превышает по точности обычную рентгенографию.

МРТ является наилучшим методом диагностики опухолей костей, а также метастазов костных опухолей в отдаленных областях. Одним из серьезных недостатков данного метода является высокая стоимость и большие временные затраты на исследование (30 минут и больше ). Все это время пациент должен занимать неподвижное положение в магнитно-резонансном томографе. Данный аппарат выглядит как тоннель закрытой конструкции, из-за чего у некоторых людей появляется дискомфорт.

Рентген и денситометрия костей

Исследование структуры костной ткани проводится при ряде заболеваний, а также при старении организма. Наиболее часто исследование структуры костей проводится при таком заболевании как остеопороз . Снижение содержания минеральных веществ в костях приводит к их хрупкости, риску переломов, деформациям и повреждениям соседних структур.

Рентгеновский снимок позволяет оценить структуру костей лишь субъективно. Для определения количественных параметров плотности кости, содержания минеральных веществ в ней используется денситометрия. Процедура проходит быстро и безболезненно. В то время как пациент лежит неподвижно на кушетке, врач исследует с помощью специального датчика определенные участки скелета. Наиболее важными являются данные денситометрии головки бедренной кости и позвонков.

Существуют следующие виды денситометрии костей:

  • количественная ультразвуковая денситометрия;
  • рентгеновская абсорбциометрия;
  • количественная магнитно-резонансная томография;
  • количественная компьютерная томография.
Денситометрия рентгеновского типа основана на измерении поглощения рентгеновского луча костью. Если кость плотная, то она задерживает большую часть рентгеновского излучения. Данный метод очень точный, но обладает ионизирующим эффектом. Альтернативные методы денситометрии (ультразвуковая денситометрия ) являются более безопасными, но и менее точными.

Денситометрия показана в следующих случаях:

  • остеопороз;
  • зрелый возраст (старше 40 – 50 лет );
  • менопауза у женщин;
  • частые переломы костей;
  • заболевания позвоночника (остеохондроз, сколиоз );
  • любые костные повреждения;
  • малоподвижный образ жизни (гиподинамия ).

Показания и противопоказания рентгена костей скелета

Рентген костей скелета имеет обширный список показаний. Различные заболевания могут быть характерны для разных возрастов, однако травмы или опухоли костей могут встречаться в любом возрасте. Для диагностики заболеваний костной системы именно рентген является самым информативным методом. Рентгеновский метод обладает также некоторыми противопоказаниями, которые, впрочем, являются относительными. Однако следует помнить, что рентген костей может быть опасен и принести вред при слишком частом использовании.

Показания к рентгену костей

Рентгеновское исследование является чрезвычайно распространенным и информативным исследованием для костей скелета. Кости недоступны для прямого обследования, однако по рентгеновскому снимку можно получить практически всю необходимую информацию о состоянии костей, об их форме, размерах и структуре. Однако рентген костей в силу выделения ионизирующего излучения не может быть выполнен слишком часто и по любому поводу. Показания для рентгена костей определены достаточно точно и основаны на жалобах и симптомах заболеваний пациентов.

Рентген костей показан в следующих случаях:

  • травматические повреждения костей с выраженным болевым синдромом, деформацией мягких тканей и костей;
  • вывихи и другие повреждения суставов;
  • аномалии развития костей у детей;
  • отставание детей в росте;
  • ограничение подвижности в суставах;
  • боль в покое или при движениях любой части тела;
  • увеличение костей в объеме, при подозрении на опухоль;
  • подготовка к оперативному лечению;
  • оценка качества проведенного лечения (переломы, трансплантации и др. ).
Список заболеваний скелета, которые выявляют с помощью рентгена, очень обширен. Это связано с тем, что заболевания костной системы обычно протекают бессимптомно и выявляются только после рентгеновского исследования. Некоторые заболевания, такие как остеопороз, являются возрастными и практически неизбежны при старении организма.

Рентген костей в большинстве случаев позволяет провести дифференциацию между перечисленными заболеваниями, благодаря тому, что каждое из них обладает достоверными рентгенологическими признаками. В сложных случаях, особенно перед проведением хирургических операций, показано применение компьютерной томографии. Врачи предпочитают использовать данное исследование, так как оно наиболее информативно и обладает наименьшим количеством искажений по сравнению с анатомическими размерами костей.

Противопоказания к рентгеновскому исследованию

Противопоказания к рентгеновскому исследованию связаны с наличием ионизирующего эффекта у рентгеновского излучения. Вместе с тем все противопоказания к исследованию являются относительными, так как ими можно пренебречь в экстренных случаях, таких как переломы костей скелета. Однако при возможности следует ограничить количество рентгеновских исследований и не проводить их без надобности.

К относительным противопоказаниям рентгеновского исследования относятся:

  • наличие металлических имплантатов в теле;
  • острые или хронические психические заболевания;
  • тяжелое состояние пациента (массивная кровопотеря, бессознательное состояние, пневмоторакс );
  • первый триместр беременности ;
  • детский возраст (до 18 лет ).
Рентген с применением контрастных веществ противопоказан в следующих случаях:
  • аллергические реакции на компоненты контрастных веществ;
  • эндокринные нарушения (заболевания щитовидной железы );
  • тяжелые заболевания печени и почек ;
Благодаря тому, что доза облучения в современных рентгеновских установках снижается, рентгеновский метод становится все более безопасным и позволяет снять ограничения по его применению. В случае сложных травм рентген проводится практически сразу, для того чтобы как можно раньше начать лечение.

Дозы облучения при различных методах рентгеновского исследования

Современная лучевая диагностика придерживается строгих норм безопасности. Рентгеновское излучение измеряется с помощью специальных дозиметров, а рентгеновские установки проходят специальную сертификацию о соответствии нормам радиологического облучения. Дозы облучения неодинаковы для разных методов исследования, а также для различных анатомических областей. Единицей измерения дозы облучения является миллиЗиверт (мЗв ).

Дозы облучения при различных методах рентгена костей

Как видно из приведенных данных, наибольшую рентгеновскую нагрузку несет компьютерная томография. Вместе с тем, компьютерная томография является самым информативным методом исследования костей на сегодняшний день. Также можно сделать вывод о большом преимуществе цифровой рентгенографии перед пленочной, поскольку рентгеновская нагрузка снижается от 5 до 10 раз.

Как часто можно делать рентген?

Рентгеновское излучение несет определенную опасность человеческому организму. Именно по этой причине все излучение, которое было получено с медицинской целью, должно быть отражено в медицинской карте больного. Такой учет должен вестись с целью соблюдения годовых норм, ограничивающих возможное количество рентгеновских исследований. Благодаря применению цифровой рентгенографии их количество достаточно для решения практически любых медицинских задач.

Ежегодное ионизирующее излучение, которое получает организм человека из окружающей среды (природный фон ), составляет от 1 до 2 мЗв. Предельно допустимая доза рентгеновского излучения составляет 5 мЗв в год или по 1 мЗв в течение каждого из 5 лет. В большинстве случаев данные значения не превышаются, так как доза облучения при однократном исследовании в разы меньше.

Количество рентгеновских исследований, которое можно провести в течение года, зависит от типа исследования и анатомической области. В среднем допускается проведение 1 компьютерной томографии или от 10 до 20 цифровых рентгенографий. Однако надежных данных о том, какое влияние оказывают дозы излучения в 10 – 20 мЗв ежегодно, нет. С уверенностью можно сказать лишь то, что в некоторой мере они повышают риск некоторых мутаций и клеточных нарушений.

Какие органы и ткани страдают от ионизирующего излучения рентгеновских установок?

Способность вызывать ионизацию – одно из свойств рентгеновского излучения. Ионизирующее излучение может привести к спонтанному распаду атомов, клеточным мутациям, сбою в воспроизводстве клеток. Именно поэтому рентгеновское исследование, являющееся источником ионизирующего излучения, требует нормирования и установления пороговых значений доз облучения.

Ионизирующее излучение оказывает наибольшее влияние на следующие органы и ткани:

  • костный мозг , кроветворные органы;
  • хрусталик глаза;
  • эндокринные железы;
  • половые органы;
  • кожа и слизистые оболочки;
  • плод беременной женщины;
  • все органы детского организма.
Ионизирующее излучение в дозе 1000 мЗв вызывает явление острой лучевой болезни. Такая доза попадает в организм только в случае катастроф (взрыв атомной бомбы ). В меньших дозах ионизирующее излучение может приводить к преждевременному старению, злокачественным опухолям, катаракте . Несмотря на то, что доза рентгеновского излучения сегодня значительно уменьшилась, в окружающем мире существует большое количество канцерогенных и мутагенных факторов, которые в совокупности могут вызывать такие негативные последствия.

Можно ли делать рентген костей беременным и кормящим мамам?

Любое рентгенологическое исследование не рекомендуется к проведению для беременных женщин. Согласно данным Всемирной Организации Здравоохранения доза в 100 мЗв практически неизбежно вызывает нарушения развития плода или мутации, приводящие к раку . Наибольшие значение имеет первый триместр беременности, так как в этот период происходит наиболее активное развитие тканей плода и формирование органов. При необходимости все рентгенологические исследования переносят на второй и третий триместр беременности. Исследования, проведенные на людях, показали, что рентген, выполненный после 25 недели беременности, не приводит к аномалиям у ребенка.

Для кормящих матерей отсутствуют ограничения в выполнении рентгеновских снимков, так как ионизирующее влияние не влияет на состав грудного молока . Полноценные исследования в данной области не были проведены, поэтому в любом случае врачи рекомендуют кормящим матерям сцедить первую порцию молока при грудном вскармливании . Это поможет перестраховаться и сохранить уверенность в здоровье ребенка.

Рентгеновское исследование костей для детей

Рентгеновское исследование для детей считается нежелательным, поскольку именно в детском возрасте организм наиболее подвержен негативному влиянию ионизирующего излучения. Следует отметить, что именно в детском возрасте происходит наибольшее число травм, которые приводят к необходимости выполнить рентгеновское исследование. Именно поэтому рентген детям выполняется, однако используются различные защитные приспособления, которые позволяют уберечь развивающиеся органы от облучения.

Рентгеновское исследование требуется также при задержке роста детей. В этом случае рентген проводится столько раз, сколько требуется, поскольку в плане лечения включаются рентгенологические исследование через определенный промежуток времени (обычно 6 месяцев ). Рахит, врожденные аномалии скелета, опухоли и опухолеподобные заболевания – все эти заболевания требуют лучевой диагностики и не могут быть заменены другими методами.

Подготовка к рентгену костей

Подготовка к исследованию лежит в основе любого успешного исследования. От этого зависит как качество диагностики, так и результат лечения. Подготовка к рентгеновскому исследованию является довольно простым мероприятием и обычно не создает затруднений. Лишь в некоторых случаях, как, например, рентген таза или позвоночника, выполнение рентгена требует особой подготовки.

Существуют некоторые особенности подготовки к рентгену детей. Родители должны помочь врачам и правильно психологически настроить детей к исследованию. Детям сложно долгое время оставаться неподвижными, также часто они боятся врачей, людей «в белых халатах». Благодаря сотрудничеству между родителями и врачами можно добиться хорошей диагностики и качественного лечения детских заболеваний.

Как получить направление на рентген костей? Где выполняют рентгеновское исследование?

Рентген костей можно выполнить сегодня практически в любом центре, где оказывают медицинскую помощь. Несмотря на то, что сегодня рентгеновское оборудование является широкодоступным, рентгеновское исследование выполняется только по направлению врача. Это связано с тем, что рентген в определенной мере вредит здоровью человека и имеет некоторые противопоказания.

Рентген костей выполняется по направлению врачей разных специальностей. Чаще всего его выполняют в срочном порядке при оказании первой помощи в травматологических отделениях, больницах скорой помощи. В этом случае направление выдает дежурный врач-травматолог , ортопед или хирург . Рентген костей может быть также выполнен по направлению семейных врачей, стоматологов , эндокринологов , онкологов и других врачей.

Рентгеновский снимок костей выполняется в различных медицинских центрах, поликлиниках, стационарах. Для этого в них оборудованы специальные рентгеновские кабинеты, в которых есть все необходимое для такого рода исследований. Рентгенодиагностику проводят врачи-рентгенологи, обладающие специальными знаниями в данной области.

Как выглядит рентгеновский кабинет? Что в нем находится?

Рентгеновский кабинет – место, где выполняют рентгеновские снимки различных частей тела человека. Рентгеновский кабинет должен соответствовать высоким стандартам противорадиационной защиты. В отделке стен, окон и дверей используются специальные материалы, которые обладают свинцовым эквивалентом, который характеризует их способность задерживать ионизирующее излучение. Помимо этого в нем есть дозиметры-радиометры и индивидуальные средства защиты от излучения, такие как фартуки, воротники, перчатки, юбки и другие элементы.

В рентгеновском кабинете должно быть хорошее освещение, в первую очередь искусственное, так как окна имеют небольшие размеры и естественного освещения недостаточно для качественной работы. Основным оборудованием кабинета является рентгеновская установка. Рентгеновские установки бывают различных форм, так как предназначены для различных целей. В крупных медицинских центрах присутствуют все виды рентгеновских установок, однако одновременная работа нескольких из них запрещена.

В современном рентгеновском кабинете присутствуют следующие виды рентгеновских установок:

  • стационарный рентгеновский аппарат (позволяет выполнять рентгенографию, рентгеноскопию, линейную томографию );
  • палатная передвижная рентгеновская установка;
  • ортопантомограф (установка для выполнения рентгена челюстей и зубов );
  • цифровой радиовизиограф.
Помимо рентгеновских установок в кабинете присутствует большое количество вспомогательного инструментария и аппаратуры. Оно также включает оборудование рабочего места врача-рентгенолога и лаборанта, инструменты для получения и обработки рентгеновских снимков.

К дополнительному оборудованию рентгеновских кабинетов относятся:

  • компьютер для обработки и хранения цифровых снимков;
  • оборудование для проявки пленочных снимков;
  • шкафы для сушки пленки;
  • расходные материалы (пленка, фотореактивы );
  • негатоскопы (яркие экраны для просмотра снимков );
  • столы и стулья;
  • шкафы для хранения документации;
  • бактерицидные лампы (кварцевые ) для дезинфекции помещений.

Подготовка к рентгену костей

Ткани организма человека, отличающиеся разной плотностью и химическим составом, по-разному поглощают рентгеновское излучение и благодаря этому обладают характерным рентгенологическим изображением. Кости обладают высокой плотностью и очень хорошей естественной контрастностью, благодаря чему рентген большинства костей выполняется без особой подготовки.

Если человеку предстоит рентгеновское исследование большинства костей, то для этого достаточно вовремя прийти в рентгеновский кабинет. При этом нет ограничений в приеме пищи, жидкости, курении перед рентгенологическим исследованием. Рекомендуется не брать с собой никаких металлических вещей, особенно украшений, поскольку их придется снять перед выполнением исследования. Любые металлические предметы создают помехи на рентгеновском снимке.

Процесс получения рентгеновского снимка не занимает много времени. Однако, для того чтобы снимок получился качественным, пациенту очень важно сохранять неподвижность во время его выполнения. Это особенно актуально для маленьких детей, которые бывают неспокойны. Рентген детям проводится в присутствии родителей. Для детей менее 2 лет рентген проводится в положении лежа, возможно применение специальной фиксации, которая закрепляет положение ребенка на рентгеновском столе.

Одним из серьезных преимуществ рентгена является возможность его применения в экстренных случаях (травмы, падения, дорожно-транспортные происшествия ) без какой-либо подготовки. При этом нет никакой потери в качестве снимков. Если пациент нетранспортабелен или находится в тяжелом состоянии, то существует возможность выполнения рентгена непосредственно в палате, где находится больной.

Подготовка к рентгену костей таза, поясничного и крестцового отдела позвоночника

Рентген костей таза, поясничного и крестцового отдела позвоночника является одним из немногих видов рентгеновских снимков, который требует особой подготовки. Она объясняется анатомической близостью с кишечником . Кишечные газы снижают резкость и контрастность рентгеновского снимка, из-за чего проводится специальная подготовка по очищению кишечника перед данной процедурой.

Подготовка к рентгену костей таза и поясничного отдела позвоночника включает следующие основные элементы:

  • очищение кишечника с помощью слабительных препаратов и клизмы;
  • соблюдение диеты , снижающей образование газов в кишечнике;
  • проведение исследования натощак.
Диета должна начинаться за 2 – 3 дня до исследования. Она исключает мучные изделия, капусту , лук , бобовые, жирные виды мяса и молочные продукты. Кроме того, рекомендуется принимать ферментные препараты (панкреатин ) и активированный уголь после приема пищи. В день перед исследованием проводится клизма или принимаются такие препараты как фортранс , которые помогают очистить кишечник естественным путем. Последний прием пищи должен быть за 12 часов до исследования, для того чтобы кишечник оставался незаполненным вплоть до момента исследования.

Методики рентгеновского исследования костей

Рентгеновское исследование предназначено для исследования всех костей скелета. Естественно, что для исследования большинства костей существуют свои особые методы получения рентгеновских снимков. Принцип получения снимков во всех случаях остается одинаковым. Он подразумевает помещение исследуемой части тела между рентгеновской трубкой и приемником излучения, таким образом, чтобы рентгеновские лучи проходили под прямым углом к исследуемой кости и к кассете с рентгеновской пленкой или датчиками.

Позиции, которые занимают компоненты рентгеновской установки относительно тела человека, называются укладками. За годы практики было разработано большое количество рентгеновских укладок. От точности их соблюдения зависит качество рентгеновских снимков. Иногда для выполнения данных предписаний пациенту приходится занимать вынужденное положение, однако рентгеновское исследование выполняется очень быстро.

Укладки обычно подразумевают выполнение снимков в двух взаимно перпендикулярных проекциях – прямой и боковой. Иногда исследование дополняется косой проекцией, которая помогает избавиться от наложения некоторых частей скелета друг на друга. В случае тяжелой травмы выполнение некоторых укладок становится невозможным. В этом случае выполняется рентген в том положении, которое доставляет наименьший дискомфорт пациенту и которое не приведет к смещению отломков и усугублению травмы.

Методика исследования костей конечностей (рук и ног )

Рентгеновское исследование трубчатых костей скелета является самым частым рентгеновским исследованием. Эти кости составляют основную массу костей, скелет рук и ног полностью складывается из трубчатых костей. Методика рентгеновского исследования должна быть знакома каждому, кто хоть раз в жизни получал повреждения рук или ног. Исследование занимает не более 10 минут, оно не доставляет боли или неприятных ощущений.

Трубчатые кости могут быть исследованы в двух перпендикулярных проекциях. Главным принципом любого рентгеновского снимка является расположение исследуемого объекта между излучателем и рентгеночувствительной пленкой. Единственным условием качественного снимка является неподвижность пациента во время исследования.

Перед исследованием отдел конечности обнажают, снимают с него все металлические предметы, зону исследования располагают по центру кассеты с рентгеновской пленкой. Конечность должна свободно «лежать» на кассете с пленкой. Пучок рентгеновского излучения направляют в центр кассеты перпендикулярно ее плоскости. Снимок выполняют таким образом, чтобы смежные суставы также попали на рентгеновский снимок. В противном случае трудно различить верхний и нижний конец трубчатой кости. Помимо этого, большой охват области помогает исключить повреждения суставов или прилегающих костей.

Обычно каждая кость исследуется в прямой и боковой проекции. Иногда снимки выполняют совместно с функциональными пробами. Они заключаются в сгибании и разгибании сустава или нагрузке на конечность. Иногда из-за травмы или невозможности изменить положение конечности приходится использовать особые проекции. Главным условием является соблюдение перпендикулярности кассеты и рентгеновского излучателя.

Методика рентгеновского исследования костей черепа

Рентгеновское исследование черепа обычно выполняется в двух взаимно перпендикулярных проекциях – боковой (в профиль ) и прямой (в анфас ). Рентген костей черепа назначается при травмах головы, при эндокринных нарушениях, для диагностики отклонений от показателей возрастного развития костей у детей.

Рентген костей черепа в прямой передней проекции дает общую информацию о состоянии костей и соединениях между ними. Он может быть выполнен в положении стоя или лежа. Обычно пациент ложится на рентгеновский стол на живот, под лоб подкладывают валик. Пациент сохраняет неподвижность в течение нескольких минут, в то время как рентгеновскую трубку направляют на затылочную область и выполняют снимок.

Рентген костей черепа в боковой проекции используется для изучения костей основания черепа, костей носа, но менее информативен для других костей лицевого скелета. Для выполнения рентгена в боковой проекции больной укладывается на рентгеновский стол на спину, кассету с пленкой ставят с левой или правой стороны головы пациента параллельно оси тела. Рентгеновская трубка направлена перпендикулярно кассете с противоположной стороны, на 1 см выше ушно-зрачковой линии.

Иногда врачи применяют рентген костей черепа в так называемой аксиальной проекции. Она соответствует вертикальной оси тела человека. Данная укладка имеет теменное и подбородочное направление, в зависимости от того, с какой стороны расположена рентгеновская трубка. Она информативна для исследования основания черепа, а также некоторых костей лицевого скелета. Ее преимущество заключается в том, что она позволяет избежать многих перекрытий костей друг на друга, характерных для прямой проекции.

Рентгенография черепа в аксиальной проекции состоит из следующих этапов:

  • больной снимает с себя металлические предметы, верхнюю одежду;
  • больной занимает горизонтальное положение на рентгеновском столе, лежа на животе;
  • голову располагают таким образом, чтобы подбородок максимально выступал вперед, а стола касались только подбородок и передняя поверхность шеи;
  • под подбородком располагается кассета с рентгеновской пленкой;
  • рентгеновская трубка направлена перпендикулярно плоскости стола, на область темени, расстояние между кассетой и трубкой должно составлять 100 см;
  • после этого выполняется снимок с подбородочным направлением рентгеновской трубки в положении стоя;
  • больной запрокидывает голову таким образом, чтобы теменем касаться опорной площадки, (поднятого рентгеновского стола ), а подбородок был как можно выше;
  • рентгеновская трубка направлена перпендикулярно к передней поверхности шеи, расстояние между кассетой и рентгеновской трубкой также составляет 1 метр.

Методики рентгена височной кости по Стенверсу, по Шюллеру, по Майеру

Височная кость – одна из основных костей, формирующих череп. В височной кости находится большое количество образований, к которым крепятся мышцы, а также отверстий и каналов, через которые проходят нервы. Из-за обилия костных образований в лицевой области рентгенологическое обследование височной кости затруднено. Именно поэтому были предложены разнообразные укладки для получения специальных рентгеновских снимков височной кости.

В настоящее время используются три проекции рентгенологического исследования височной кости:

  • Методика по Майеру (осевая проекция ). Используется для изучения состояния среднего уха, пирамиды височной кости и сосцевидного отростка. Рентген по Майеру выполняется в положении лежа. Голову поворачивают под углом 45 градусов к горизонтальной плоскости, под исследуемое ухо подкладывают кассету с рентгеновской пленкой. Рентгеновскую трубку направляют через лобную кость противоположной стороны, она должна быть направлена точно в центр наружного слухового отверстия исследуемой стороны.
  • Методика по Шюллеру (косая проекция ). При данной проекции оценивается состояние височно-нижнечелюстного сустава, сосцевидного отростка, а также пирамиды височной кости. Рентген выполняется лежа на боку. Голова пациента повернута вбок, между ухом исследуемой стороны и кушеткой находится кассета с рентгеновской пленкой. Рентгеновская трубка расположена под небольшим углом к вертикали и направлена к ножному концу стола. Рентгеновская трубка центрирована на ушной раковине исследуемой стороны.
  • Методика по Стенверсу (поперечная проекция ). Снимок в поперечной проекции позволяет оценить состояние внутреннего уха, а также пирамиды височной кости. Больной лежит на животе, голова повернута под углом 45 градусов к линии симметрии тела. Кассету располагают в поперечном положении, рентгеновскую трубку скашивают под углом к головному концу стола, пучок направляют в центр кассеты. Для всех трех методик используется рентгеновская трубка в узком тубусе.
Различные рентгеновские методики используются для исследования конкретных образований височной кости. Для того чтобы определить потребность в том или ином виде укладки, врачи руководствуются жалобами пациента и данными объективного осмотра. В настоящее время альтернативой различным видам рентгеновских укладок служит компьютерная томография височной кости.

Укладка при рентгене скуловых костей в тангенциальной проекции

Для обследования скуловой кости используется так называемая тангенциальная проекция. Она характеризуется тем, что рентгеновские лучи распространяются по касательной (тангенциально ) по отношению к краю скуловой кости. Такую укладку применяют, для того чтобы выявить переломы скуловой кости, наружного края глазницы, верхнечелюстной пазухи.

Методика рентгена скуловой кости включает следующие этапы:

  • пациент снимает с себя верхнюю одежду, украшения, металлические протезы;
  • пациент занимает горизонтальное положение на животе на рентгеновском столе;
  • голова пациента поворачивается под углом 60 градусов и укладывается на кассету, содержащую рентгеновскую пленку размером 13 х 18 см;
  • исследуемая сторона лица находится сверху, рентгеновская трубка расположена строго вертикально, однако за счет наклона головы рентгеновские лучи проходят касательно к поверхности скуловой кости;
  • в ходе исследования выполняют 2 – 3 снимка с небольшими поворотами головы.
В зависимости от задачи исследования угол поворота головы может меняться в пределах 20 градусов. Фокусное расстояние между трубкой и кассетой составляет 60 сантиметров. Рентген скуловой кости может быть дополнен обзорным снимком костей черепа, так как на нем довольно хорошо различимы все образования, исследуемые в тангенциальной проекции.

Методика рентгеновского исследования костей таза. Проекции, в которых выполняется рентген костей таза

Рентген таза является основным исследованием при повреждениях, опухолях, а также иных заболеваниях костей этой области. Рентген костей таза занимает не более 10 минут, однако существует большое разнообразие методик данного исследования. Наиболее часто выполняется обзорный рентген тазовых костей в задней проекции.

Последовательность выполнения обзорного рентгена тазовых костей в задней проекции включает следующие этапы:

  • пациент заходит в рентгеновский кабинет, снимает с себя металлические украшения и одежду, кроме нижнего белья;
  • пациент ложится на рентгеновский стол на спину и сохраняет такое положение на всем протяжении процедуры;
  • руки должны быть скрещены на груди, а под колени подкладывается валик;
  • ноги должны быть слегка раздвинуты, стопы фиксируются в установленном положении с помощью ленты или мешочков с песком;
  • кассета с пленкой размерами 35 х 43 см расположена поперечно;
  • рентгеновский излучатель направлен перпендикулярно кассете, между верхним передним подвздошным гребнем и лонным сочленением;
  • минимальное расстояние между излучателем и пленкой составляет один метр.
В случае если у пациента повреждены конечности, то ногам не придается специальное положение, поскольку это может привести к смещению отломков. Иногда рентген выполняется для обследования лишь одной части таза, например, при повреждениях. В таком случае больной занимает положение на спине, однако в тазе совершается незначительная ротация, таким образом, чтобы здоровая половина был на 3 – 5 см выше. Неповрежденная нога согнута и приподнята, бедро располагается вертикально и выходит за пределы исследования. Рентгеновские лучи направляют перпендикулярно шейке бедренной кости и кассете. Такая проекция дает боковой вид тазобедренного сустава.

Для исследования крестцово-подвздошного сочленения используется задняя косая проекция. Она выполняется при подъеме исследуемой стороны на 25 – 30 градусов. При этом кассета должна располагаться строго горизонтально. Рентгеновский луч направлен перпендикулярно кассете, расстояние от луча до передней подвздошной ости составляет около 3 сантиметров. При такой укладке пациента на рентгеновском снимке отчетливо отображается соединение между крестцом и подвздошными костями.

Определение возраста скелета по рентгену кисти у детей

Костный возраст точно свидетельствует о биологической зрелости организма. Показателями костного возраста являются точки окостенения и сращения отдельных частей костей (синостозы ). На основе костного возраста можно точно определить окончательный рост детей, установить отставание или опережение в развитии. Костный возраст определяется по рентгенограммам. После того, так были выполнены рентгенограммы, полученные результаты сравнивают с нормативами по специальным таблицам.

Наиболее показательным в определении возраста скелета является рентген кисти. Удобство данной анатомической области объясняется тем, что в кисти точки окостенения появляются с довольно высокой частотой, что позволяет регулярно проводить исследование и наблюдать за темпами роста. Определение костного возраста в основном используется для диагностики эндокринных нарушений, таких как недостаток гормона роста (соматотропина ).

Сопоставление возраста ребенка и появления точек окостенения на рентгеновском снимке кисти

Точки окостенения